

Urban water infrastructure asset management: a structured approach in four Portuguese water utilities

M. A. Cardoso*, M. Santos Silva*, S. T. Coelho*, M. C. Almeida*, D.I.C Covas**

Laboratório Nacional de Engenharia Civil, Av. do Brasil 101, Portugal

** Instituto Superior Técnico, Av. Rovisco Pais, Portugal

CONTENTS

- >>> Scope & objective
- Case studies
- >>> Strategic level results
- >>> Tactical level results
- >>> Benefits of IAM planning implementation
- >> Conclusions

CONTENTS

- >>> Scope & objective
- >> Case studies
- >>> Strategic level results
- >>> Tactical level results
- >>> Benefits of IAM planning implementation
- >> Conclusions

Scope & objective

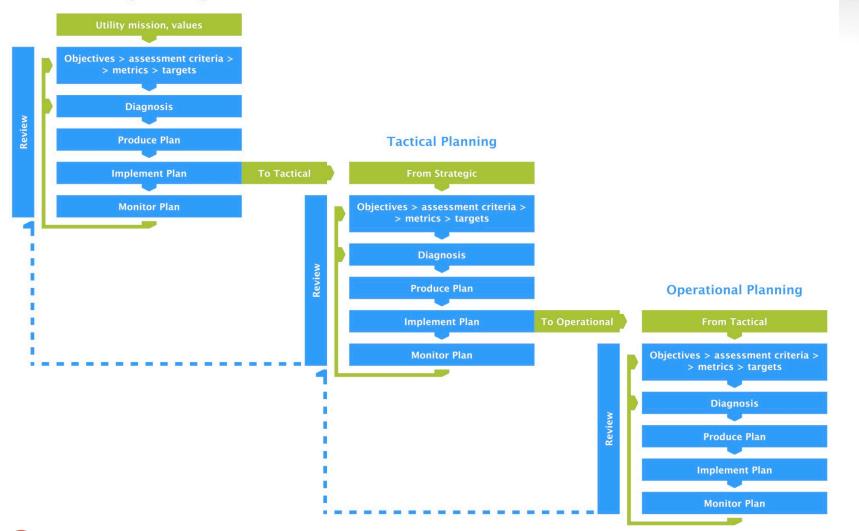
- >>> Water services are fundamental to:
 - public health protection
 - population well-being
 - sustainable development of the community
 - mental protection

>>> Usually theses services are taken for granted!

>> to be rationally and efficiently managed!

AWARE approach

>>> A strutured and comprehensive procedure for IAM



AWARE approach

Strategic Planning

Scope & objective

>>> This procedure has been **applied** by four Portuguese water utilities

- >>> Paper presents an **appraisal of the implementation** of the referred procedure in these utilities:
 - describing characteristics of the different water utilities
 - identifying the major benefits and outcomes of each developed plan
 - identifying the main difficulties that arose from this implementation.

Contents

- >>> Scope & objective
- >> Case studies
- >>> Strategic level results
- >>> Tactical level results
- >>> Benefits of IAM planning implementation
- >> Conclusions

Case studies

End-user partner		Type of utility	Systems	Pilot study			
Α	AGS, S.A.	private holding	municipal concessions from pop. 7,000 to 200,000	"Aguas do Marco" serving 55,000 p			
В	AdP Serviço, S.A.	part of AdP Group	multi-municipal systems	large bulk WWS (700,000 p.) and an industrial WSS			
С	SMAS Oeiras e Amadora	independent public utility	Municipalities of Oeiras and Amadora	pop. 350,000			
D	Veolia Águas de Mafra	private operator	Municipality of Mafra	Pop. 76,000			

Contents

- >>> Scope & objective
- Case studies
- >>> Strategic level results
- >>> Tactical level results
- >>> Benefits of IAM planning implementation
- >> Conclusions

Strategic level results

Objectives > assessment criteria > > metrics > targets

Diagnosis

Produce Plan

Implement Plan

	ОВ	OBJECTIVES											
	(using		4500:20	007; EN	752 s	tandard	ds; ERS	SAR qu	ality of	service	asses	sment	syst
ASSESSMENT CRITER	Public health and safety	Meeting user's needs and expectations	Provision of the service under normal and emergency situations	Sustainability of the undertaking	Promotion of sustainable development of the community	Protection of the environment	Users interests defence and protection of public health	Sustainability of the service provision	Environmental sustainability	Organizational sustainability	Certification	Adequacy of the service provided	Assessment of the quality of the service provided
Compliance of all legal requireme concerning public safety and qua for human consumption								0, _					
Service supply failures		D											
Adequacy of the water quantity			D										
Financial sustainability				B; D				A; C		Α			
Environmental management system certification											A; B		
Occupational health protection ar safety management certification	nd										A		>

SWOT analysis

STRENGTHS WEAKNESSES

- Good information systems on WSI
- Sufficient information to assess the water supply systems condition and performance
- **Strong competence** of human resources
- Relation between information systems and work orders

- Insufficient information systems on WWI (gaps, inaccuracies)
- Financial restrictions
- Inadequate tariffs
- Poor structural condition
- Poor functional performance
- Insufficient historical records
- Inadequate data

OPPORTUNITIES

- Equipment and technologies available
- Portuguese regulation and legislation (improve Qual.Service)
- Incentives for sustainable use of energy

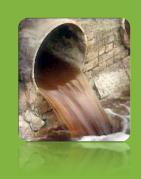
THREATS

- Portuguese legislation and regulation (costs)
- Political uncertainties
- Economic crisis and financial restrictions
- Demographic development uncertainties
- Illegal cross connections in wastewater systems

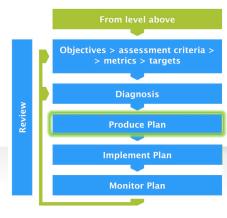
>>>

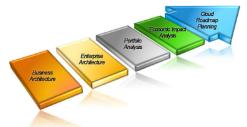
Strategic level results

Main problems identified


Low system reliability

- Water losses
- Mains' failures
- Insufficient service accessibility
- Insufficient / inadequate data
- Insufficient historical records
- **Flooding**
- **Collapses**
- **Cross connections** and high **infiltration** and inflows
- Insufficient service accessibility and coverage




Strategic level results

Strategies (similar for WS and WW)

- >>> S1 Protect public health regarding WS quality
- >> S2 Control water losses

- >> S3 Protect public health from untreated WW discharges
- >> S4 Reduce cross connections and infiltration

- >> S6 Improve infrastructures information systems
- >>> S7 Increase system reliability

Contents

- >>> Scope & objective
- Case studies
- >>> Strategic level results
- >> Tactical level results
- >>> Benefits of IAM planning implementation
- >> Conclusions

Туре	System reference	Features (physical charactics and population)	Problems Implement Plan			
Water Supply	A-WS1	Rural / peri-urban; 478 customers; 39 km pipe length; 278 service connections	- High water losses - High non-revenue water - Inadequate pressure - Occurrence of pipe failures			
	A-WS2	Rural/ peri-urban; 220 customers; 3 km pipe length; 114 service connections	- Insufficient storage capacity - High water losses - High non-revenue water - Inadequate pressure - Occurrence of pipe failures			
	B-WS	Industrial ; service started 1980; supplied by one 10 km water main; 17 km pipe length; $10^7 \text{m}^3/\text{year}$	- Water losses - Corrosion in metallic components - Future increase of supply needs - Need for system redundancy			
	C-WS	Urban ; 4388 customers; 12.5 km pipe length; 40% of asbestos cement	 High water losses Pressure problems Velocity problems Pipe failures, mainly in asbestos cement Service interruptions 			
Waste water	A-WW	Rural / peri-urban; 1.1 km² catchment area; separate domestic system; 9.5 km sewer length; 280 manholes; 85 customers; 128 723 m³/year	- Insufficient inventory data - Insufficient monitoring data - High inflow/infiltration flows			
	B-WW	Domestic interceptor system; close to coastal bathing waters; 220 km² contributing area; 140 km sewer length; 798 000 p.e.; 155 000 m³/day of collected wastewater; 11 pumping stations;	 Poor structural condition of particular sewers High inflow/infiltration flows (mainly received from upstream municipal sewers) 			
	C-WW	Urban ; separate system (domestic + storm water); 3.4 km domestic sewer length; 3.5 km stormwater sewer length	 Root intrusion High inflow/infiltration flows Poor structural condition of some sewers 			
III.	D-WW	Rural / peri-urban; separate domestic system; 360 km sewer length 16	- Insufficient service physical accessibility - Insufficient service COVETAGE			

Objectives > assessment criteria > > metrics > targets

Diagnosis

- Objectives > assessment criteria > > metrics > targets

 Diagnosis

 Produce Plan

 Implement Plan

 Monitor Plan
- >>> Commonalities and differences of case studies
 - >> Scenarios of evolution (relevant changes in the external context)
 - >> demand evolution (all)
 - >> changes in the regulatory system (all)
 - >>> physical access to downstream interception WW services (one)

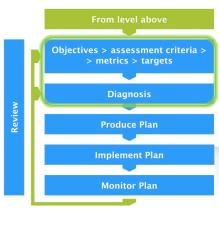
Infrastructural contexts

- >>> mature infrastructures (all), requiring rehab to assure reliable service M&L term
- >>> some systems in densely populated areas whereas others in periurban or countryside areas
- >> excessive inflows from stormwater
- >> insufficient capacity
- >> no redundancy

- >>> Commonalities and differences of case studies
 - » Drivers
 - >> scenarios
 - >> infrastructural contexts
 - Types of decisions required
 - >>> prioritizing among subsystems for concerted actions
 - >>> detail analysis of parts of the systems
 - >> application of the whole process

These differences led to distinct paths!

- >>> System assessment and selection of priority areas
 - >>> tactical objectives, assessment criteria and metrics were defined in alignment with the outcomes of the strategic plan
 - >> these were applied to each system
- >>> Analysis horizons
 - Most operators considered 20 years
 - >> except those with concession >> the last year of concession
- >>> Tactical planning horizons
 - >> 2 to 5 years



>>> Detailed diagnosis based on:

- available data:
 - >> GIS
 - >>> billing systems
 - >> complaints & work order records
 - >> systems telemetry
 - >> hydraulic models
 - >>> performance indicators
 - >> accounting data

		Implement Plan
	Scenarios	Alternatives
Water supply	 Current situation (e.g. consumption) Domestic consumption changes based on expected population evolution Consumption defined in the concession contract Consumption considering commercial development Industrial consumption changes 	 Status quo Pressure reduction on the network Improvement of operation practices Pipes with higher failure rates replacement Construction of new pipes to ensure systems reliability Optimal design in term of cost and energy
Wastewater	 Current situation (e.g. rejection, infiltration) Rejection evolution based on expected population evolution 	Status quoPipes replacement.Pipes renovation.
	- Reduction of illegal cross connections and infiltration / inflow	 Reduction of a number of cross-connections in separate systems.

- Improvement of operation and maintenance practice

connections to the interceptor system where it is

Construction of alternative solutions for treatment and

available.

- Completion, during the next years, of

provided

treatment and interceptor works that are the responsibility of another operator, but affects -

the coverage and availability of the service

- Objectives > assessment criteria > > metrics > targets

 Diagnosis

 Produce Plan

 Implement Plan

 Monitor Plan
- >>> Assessments and multicriteria analysis:
 - >> the balance between the assessments P, C, R
 - not all assessments were used
 - >> in A-WS1 and A-WS2, the main assessments were P+C
 - >> in B-WS and D-WW cases, the main assessments were C+R
 - >> the **cost** is always relevant for all operators
 - evaluation and ranking of alternatives
 - >> See Marques et al. (2011)'s presentation
 - >>> See Carriço et al. (2011)'s presentation

Contents

- >>> Scope & objective
- Case studies
- >>> Strategic level results
- >>> Tactical level results
- >>> Benefits of IAM planning implementation
- >> Conclusions

Benefits of IAM implementation

Relevant for all >> expected to be common to other operators

SWOT analysis

STRENGTHS

- AWARE-P project partnership
- Development of an IAM plan
- Availability and experience on information systems

Knowledge improvement on IAM by participating on the project

- Results and opinion sharing with other utilities
- Promotion of internal procedures changes
- Improvement of infrastructures knowledge (e.g. inventory data collection)
- Improvement of infrastructures condition and functional information (e.g. infrastructure condition, monitoring)

Weaknesses

- Insufficient integration between different organizational levels (e.g. decision, technical, operational)

Poor availability of data specially in wastewater systems which affects C-P-R assessments

- Poor information on systems reliability (e.g. failure data, historical records)
- Poor quality of data
- Limitations in existing information systems
- Difficulty in alternatives design and analysis
- Financial constraints

OPPORTUNITIES

THREATS

- Availability of new developments in IAM planning
- Availability of new developments and technologies
- Existence of a concession contract
- Higher requirements of customers on the service provided
- Need to improve infrastructure data and information

- Lack of specification, in the Portuguese legislation, on what is IAM
- Significant effort and human resources were required for the implemention of IAM planning methodology
- Investment restriction of concession contracts (low investment flexibility)
- Financial restrictions, Political uncertainties, Economic crisis

Contents

- >>> Scope & objective
- Case studies
- >>> Strategic level results
- >>> Tactical level results
- >>> Benefits of IAM planning implementation
- >> Conclusions

Conclusions

>> Application of the AWARE-P IAM methodology

>>> End-users

represent a significant variety of institutional /organizational formats, priorities, drivers

>> Good evidence

that the methodology provides a standardised and flexible IAM planning framework

Conclusions

>>> Strategic management level

- >>> the need to revise stated objectives and strategies
- the importance of carrying out a systematic and organised diagnosis

>>> Tactical management level

- the most critical step is in generating meaningful and comprehensive alternatives
- >>> the need to integrate performance, risk and cost assessments

