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Abstract

The failure prediction process plays an important role in infrastructure asset management of

urban water systems. This process aims at assessing the future behaviour of a urban water

network. However, failure prediction in urban water systems is a complex process, since the

available failure data often present a short failure history and incomplete records.

In the study presented in this thesis, three di�erent failure prediction models, the single-

variate Poisson process, the Weibull accelerated lifetime model and the linear extended Yule

process, were implemented and explored in order to identify robust and simple models that

combine good failure prediction results using short data history. The three models were

applied to a Portuguese urban water supply system.

The Weibull accelerated lifetime model presented the best results throughout the comparison

of the three models, presenting accurate predictions and a good ability to detect pipes with

high likelihood of failure. Nevertheless, the expected number of failures can only be obtained

using a Monte Carlo simulation, which can be a time-consuming procedure.

The linear extended Yule process could also e�ectively detect pipes more prone to fail.

However, it presented a clear tendency to overestimate the number of future failures.

The single-variate Poisson process is a very simple stochastic process, that is easy to un-

derstand and to apply. Due to its simplicity, this prediction process lacks the ability of

di�erentiating e�ectively the water network pipes, which leads to lower quality individual

failure predictions.

It is noteworthy that no signi�cant di�erence between the three models results was found

when predicting failures in pipes with no failure history.

Key words: Failure prediction; Infrastructure asset management; LEYP; Poisson process;

Water supply networks; Weibull regression.
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Resumo

O processo de previsão de falhas tem um papel extremamente importante na gestão patri-

monial de infra-estruturas em sistemas urbanos de água. Este processo tem como objectivo

avaliar o comportamento futuro dos sistemas urbanos de água. No entanto, a previsão de

falhas em sistemas urbanos de água é um processo complexo, uma vez que os dados de falhas

disponíveis apresentam frequentemente um historial de falhas curto e registos incompletos.

No estudo efectuado nesta tese, três modelos de previsão de falhas, o processo de Poisson

univariado, o modelo de regressão Weibull e a extensão linear do processo de Yule (LEYP),

foram estudados com o objectivo de identi�car modelos simples e robustos que permitam boas

previsões de falhas com base num historial de falhas curto. Os três modelos foram ajustados

aos dados de falha provenientes de um sistema de abastecimento de água português.

O modelo de regressão Weibull foi o modelo que apresentou melhores resultados durante

a comparação dos três modelos, apresentando previsões exactas e uma boa capacidade em

identi�car as condutas com maior tendência para falhar. Contudo, o valor esperado do

número de falhas tem de ser obtido através de simulações de Monte Carlo, o que pode ser

um processo com alguma complexidade temporal.

O LEYP consegue, igualmente, identi�car e�cazmente as condutas com maior tendência para

falhar. No entanto, apresenta uma clara tendência para sobrestimar o número de falhas.

O processo de Poisson univariado é um processo estocástico muito simples, que é fácil de

compreender e de aplicar. Devido à sua simplicidade, este processo de previsão de falhas não

tem a capacidade de diferenciar e�cazmente as várias condutas do sistema urbano de água,

o que leva a piores resultados no que toca a previsões de falha em cada conduta.

É importante notar que a diferença entre os resultados dos três modelos não foi muito

signi�cativa quando aplicados a condutas sem historial de falhas.

Palavras Chave: Gestão patrimonial de infra-estruturas; LEYP; Previsão de falhas; Pro-

cesso de Poisson; Regressão Weibull; Sistemas de abastecimento de água.
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Chapter 1

Introduction

1.1 Preliminaries

Managing urban water systems is not a simple activity, and, due to several factors, such as

climate change, economic restrictions, ageing of the systems, increasing customer demands, it

is becoming even more complex. Currently, for environmental and economic reasons, water

utilities are increasingly concerned on minimising water losses and in meeting customer

demands. Traditional infrastructure asset management methodologies, such as the like-for-

like strategy, are not adequate for urban water system long-term planning. To help urban

water utilities facing these new challenges, new methodologies are being developed, such as

the AWARE-P methodology (Alegre et al., 2011).

Failure prediction plays a major role during planning and decision support processes, whether

in evaluating di�erent solutions for the identi�ed urban water system problems, whether in

evaluating the current system performance under several scenarios. Nevertheless, urban

water utilities are only recently becoming aware of the importance of keeping an organised,

updated and complete inventory and failure database. Failure data history is very limited

in the majority of the urban water systems. For this reason, the task of predicting failures

is more di�cult than expected. A great challenge is to �nd a failure prediction model that

can produce good quality results, even in the cases of lack of failure data.

The aim of this work is to identify robust and simple models that combine: good predictions

for short failure records; robustness when applied to di�erent pipe samples; and simplicity.

The studied failure prediction models were: the single-variate Poisson process; the Weibull

accelerated lifetime model; and the linear extended Yule process. These models were applied

to a Portuguese urban water supply failure data provided by the Serviços Municipalizados

de Água e Saneamento de Oeiras e Amadora (SMAS O&A). The prediction results were

1



Chapter 1: Introduction

compared and discussed, regarding the prediction accuracy and the ability of each model to

identify the pipes with higher likelihood of failing; some improvements were also suggested.

The work presented in this thesis has been developed within the AWARE-P project frame-

work, allowing the author working with several water utilities during this study. This fact

contributed to a better awareness of the main concerns of Portuguese water utilities in infras-

tructure asset management. Working with these water utilities highlighted the importance

of developing �exible and simple failure prediction models, that can produce accurate pre-

dictions with limited failure records.

All statistical analysis in this work was conducted with the use of the statistical software R

(R Development Core Team, 2011).

1.2 Brief review of failure prediction models

The �rst statistical failure prediction models applied to urban water systems were developed

from the early 1980s. The �rst models were deterministic, in which the decision variable

(number of failures or time to next failure) is obtained directly from a function of explanatory

variables. One of the �rst models was developed by Shamir and Howard (1979) that related

the number of failures per unit length per year with the exponent of the age of a pipe. In

this model no covariates were used, pipes were divided into homogeneous groups according

to some of their attributes, such as diameter and material. Other time exponential models

were proposed, in which more covariates were considered, e.g. Clark et al. (1982).

A di�erent group of deterministic models describes the time to the �rst failure as a linear

combination of several pipe attributes. The main disadvantage of these models is the lack

of capability of dealing with censored data.

Deterministic models, whose behaviour is predicted by mathematical functions, can give an

estimated value of one or more known variables. Nevertheless, to model failures in water

systems, stochastic models might be more suitable, since they take into account the random

nature of these failures.

There are two di�erent types of stochastic models: single-variate and multivariate models.

Herz (1996) proposed a new single-variate survival analysis. In his work, Herz de�nes a

new lifetime probability distribution, with simple density and survival functions, to describe

the lifetime of a pipe. Pipes were divided into several homogeneous groups in which the

parameters of the Herz distribution were estimated. Other models that use the attributes of

pipes as grouping criteria, rather than covariates, are the Bayesian diagnostic model proposed

by Kulkarni et al. (1986) and the semi-Markov chain analysis suggested by Gustafson and

2



1.2. Brief review of failure prediction models

Clancy (1999).

The Poisson process, implemented in this work, is a single-variate model with a constant

failure rate for each pipe group. In this work, it is assumed that the rate of the process is

proportional to the pipe length. As such, the probability distribution associated with the

number of pipes during a time period t is Poisson(λlit), where li de�nes the length of pipe i

and λ is assumed constant in each pipe group. This model is described in detail in Chapter 3.

Single-variate models have one main issue: failure data need to be divided into several

homogeneous groups, assuming that the failure rate is the same in each group. However,

a large number of groups would lead to a shortness of records in each group, which could

consequently lead to biased predictions.

Multivariate models, which use covariates, allow to di�erentiate the pipe failure distributions

without splitting failure data. In addition, these models allow a better understanding of how

the di�erent pipe attributes in�uence the occurrence of failures.

Cox (1972) developed the Proportional Hazard Model (PHM), where the hazard rate is given

as a function of the time and a vector of covariates:

h(t|x) = h0(t)e
xᵀβ, (1.1)

where t is the elapsed time from the last failure, x is the covariates vector, β is a coe�cients

vector and h0(t) is a baseline function that can be estimated.

The proportional hazard model assumes that each covariate acts multiplicatively in the

hazard function (or the covariates are assumed to act additively on lnh(t|x)). Cox (1972)

suggests a method for predicting coe�cients β not regarding the baseline function h0; this

method is based on the partial likelihood estimation. The baseline function h0 can, then, be

approximated in order to �t the empirical hazard function. Je�rey (1985) was the �rst to

apply this method to a water network failure data. In his work, after β has been estimated,

h0 was approximated to a second degree polynomial, in order to translate the bathtub e�ect

in the hazard function.

An accelerated lifetime model was applied in water network research by Lei (1997). This

model de�nes the logarithm of the time to next failure as the linear combination of the

covariates vector and a random error variable. A particular case, is the Weibull accelerated

lifetime model, applied in Le Gat and Eisenbeis (2000), when the times between failures

are given by a Weibull distribution. When the proportional hazard model uses an hazard

base function with the Weibull power law form (i.e. h0(t) = δtδ−1) these two models are

analogous. That is the reason Eisenbeis and Le Gat call it the Weibull proportional hazard

model. This model is detailed in Chapter 4.

3



Chapter 1: Introduction

New lifetime distributions, with higher complexity, have been developed recently in order

to approximate the hazard function to a bathtub curve, such as: the log-extended Weibull

distribution (Silva et al., 2009); and the lognormal-power function distribution (Reed, 2011).

In this work, the empirical hazard function was estimated for the available failure data,

using function muhaz of the statistical software R, which is based on a method described

in Gefeller and Dette (1992). The empirical hazard function, presented in Figure 1.1, does

not seem to have a bathtub curve shape. This fact is probably due to the short period of

failure records used in this work. In fact, the two-parameter Weibull distribution can already

present a hazard rate that approximates the empirical hazard rate in Figure 1.1.
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Figure 1.1: Hazard rate estimate.

Another recent developed approach, suggested by Le Gat (2009), is the linear extended Yule

process. This is a counting process where the rate of the process is given by a linear function

of the number of past events. A particular case of this model, with the process rate depending

on the pipe age and other covariates, is studied in Chapter 5.

Multivariate models present the disadvantage of �xing a priori how the covariates act on the

failures distribution. In WALM and LEYP it is assumed that the Weibull scale parameter

and the process rate, respectively, are proportional to the exponent of a linear combination

of the covariates vector.

A more complete description of failure prediction models can be found in Kleiner and Rajani

(2001).
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1.3. Data issues in prediction of failures

1.3 Data issues in prediction of failures

The collection of urban water systems failure data is, in general, a relatively uncommon

process. Recently it is becoming a new concern, as water utilities start realising the im-

portance of keeping accurate information related to their systems. This is a recent concern

and, as such, di�culties in collecting information arise. Available failure data used in the

development of failure models present several weaknesses that are exposed in this section.

Some refer only to the particular case of the data set used in this work, but others can be

applied to most of failure data sets.

Since the components (e.g. pipes, sewers and manholes) of a urban water network failure

analysis have, in average, a very long lifetime, it is not easy to have recorded the complete

history of all these components. Failure data of urban water systems are typically left-

truncated and right-censored.

Failure data are traditionally left-truncated, because there is a number of failures, that oc-

curred in the components before the beginning of the recorded history, that is unknown.

Any component installed before the beginning of the recorded observations may have, or

not, failed in the past. In addition the failure data set used in this study comprises only

operating pipes. This means that there is a considerable amount of pipes that were already

decommissioned that is completely unknown; this fact can signi�cantly bias the failure pre-

dictions.

Another typical characteristic of failure data is that they are often right censored. Whenever

records show the elapsed time without failing of some pipe, but does not show the exact time

of failure, this elapsed time is a right-censored information: only the time the pipe survived

is known, but the exact time of occurrence is unknown. This is an important factor that

needs to be taken into account when failure prediction models are applied.

The oldest failure records in the failure data set used in this study date back to 2001. That

is, the failure observation period is of 10 years only. Although the size of the failure data set

is relatively large, about 11,500 pipes and 1,900 failures, with such an observation period it

will be di�cult to assess the deterioration process. The tight observation window causes a

great amount of pipes with no recorded failures; more than 90% of pipes have never failed

during the 10 years of observation. This makes di�cult to �t the lifetime distribution and

the distribution of the number of failures.

Another issue that needs to be taken into account is the scarcity of the collected component

characteristics. The majority of failure models developed to predict pipe failures in urban

water systems use the following variables: pipe diameter, material, installation year and

length. Besides these, they often make use of soil and tra�c characterisation. Some models

5



Chapter 1: Introduction

even use environmental characteristics, such as temperature and precipitation, and operating

pressure. Nevertheless, the available data, used in this work, present only �ve variables:

diameter, material, installation year, length and roughness. More available variables could

help to di�erentiate pipes, helping to derive the failures distribution according to the di�erent

pipe characteristics.

The inconsistencies that can be found when analysing the failure data are another frequent

problem. Failure data are generally presented in two data tables, the pipe inventory and the

maintenance records table. It is from the combination of these two tables that several incon-

sistencies can be found, such as pipes that have associated failures before their installation

year. These inconsistencies are usually caused by careless update of the tables and also due

to the lack of a veri�cation process that should be conducted after the update procedure.

These data issues are an important part of the failure data analysis. It is important to develop

and apply models that are robust to these problems and can still give good predictions.

1.4 Thesis outline

This thesis is organised in six chapters, as follows. Chapter 1 introduces the concepts and

the motivation of the work presented in the thesis. The task of predicting failures in water

supply systems is introduced and discussed brie�y in Section 1.1; a summarised review of

failure prediction models is presented in Section 1.2 , in order to put this work in context;

in Section 1.3, data limitations in predicting failures are presented.

Chapter 2 describes the failure data used throughout this study. Explaining how the di�erent

variables are related among them and how they in�uence the failure rate.

In Chapters 3, 4 and 5 the failure prediction models were �tted. Each of these chapters

presents a brief theoretically description of the model, the application of the model to the

failure data and issues and improvements proposed in by the author.

In Chapter 6 is conducted a thorough comparison between the three failure prediction models.

Finally, Chapter 7 summarises the main �ndings of this thesis, discussing the advantages

and disadvantages of each model.

6



Chapter 2

Exploratory data analysis

In this chapter, the results of the failure data analysis, from a urban water supply network,

are presented. As mentioned in Chapter 1, failure predictions depend on the quality of the

available data. It is of utmost importance to explore the failure data in order to develop

good prediction models and to analyse objectively the failure prediction results.

First, a basic description of the data source is done, after that, a correlation matrix is com-

puted to try to understand the relationship between the di�erent attributes of the pipe

network. Finally, an analysis is conducted to understand how failure rate is in�uenced by

each of these attributes.

2.1 Failure data structure

The failure data used in this work were provided by SMAS O&A. They were presented in two

data tables: the pipe inventory table and the maintenance records table. The pipe inventory

table consists of a collection of all pipes identi�ed by a unique code IPID. Each pipe is

characterised by several attributes, such as pipe material, diameter, length and installation

year.

The maintenance records table consists of all rehabilitation actions operated in the water

network system. Each rehabilitation action is identi�ed by a unique code (WOID) and is

uniquely associated to the pipe identi�er in which the rehabilitation action occurred (IPID).

In addition to these attributes, each rehabilitation action is characterised by the failure type

that caused the need of rehabilitation and its date and duration.

The only failures considered in this study were pipe breaks.

7



Chapter 2: Exploratory data analysis

These two tables were combined using the IPID columns, in order to associate attributes,

such as number of failures of each pipe and age of pipe at each failure.

2.2 Water supply network

As mentioned in Chapter 1, failure data present several issues. In the particular case of

the data provided by SMAS O&A, some of the issues are the missing data (empty attribute

records) and the anomalous data (inconsistencies between the pipe inventory and the reha-

bilitation records). Despite the reduction of the overall data set size, the option, taken in

this work, was to remove incomplete and anomalous records (i.e. pipe and failure records

that do not have basic information or are inconsistent). Other approaches such as, imputa-

tion and survival models with missing data could be considered, but this would bring new

complications in data analysis.

The available data is characterised as follows:

• Number of pipes: 11,472.

• Total length: 367km.

• Number of rehabilitation actions: 1,921.

• Number of pipes with no failures: 10,329 (90%).

• Total length of pipes with no failures: 287km (78%).

To characterise the water supply system used in this work, the study of the basic graphical

and numerical summaries of data pipes according to each main variable was carried out.

Results for the pipe material are presented in Figure 2.1.

As can be seen in Figure 2.1, the more common pipe materials in this system are the

Asbestos Cement (AC), High-Density PolyEthylene (HDPE) and PolyVinyl Chloride (PVC).

These three materials together represent more than 95% of the entire water supply network.

Ductile Cast Iron (DCI) still has some signi�cance, whereas Galvanised Steel (GS) is of

little relevance, representing only 2.5km, and Cast Iron (CI) is completely negligible, since

it only represents 0.035km. Therefore, when failure data are divided into di�erent material

categories, CI pipes should be discarded since it has no signi�cance in this case; GS pipes

may or may not be discarded. Another option would be to include these pipe materials in

other material categories, if they share similar characteristics.
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2.2. Water supply network
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Figure 2.1: Total length frequencies by pipe material.

To assess the age of the water network, the decade of installation was considered rather than

the year, because the older pipes have only the record of installation decade. Only pipes

installed after 1980 have the exact installation year information. Figure 2.2 shows the plot

of the total length per installation decade.
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Figure 2.2: Total length frequencies by installation decade.

From this plot, it can be seen that the network is relatively recent. The less representative

decades are the two oldest ones. Decade 2010 is a special case, as it represents only one year

of installation. Therefore if the failure data set is divided by installation decade, the oldest

decades can probably be aggregated in one class and decade 2010 can be included in decade

2000.

The general summary of the frequencies of the three remaining basic variables is presented
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Chapter 2: Exploratory data analysis

in Table 2.1.

Table 2.1: Summary of diameter, length and number of failures variables.

Variables Min 1st Quartile Median 3rd Quartile Max Mean St.Dev.

Diameter (mm) 20 90 110 125 630 120 62.3

Length (m) 0.1 2.4 10.5 44.5 904.8 32.0 51.9

Number of failures 0 0 0 0 16 0.17 0.66

One fact that can be drawn from Table 2.1 is that the length variable has a great variability,

with range values between 0.1m and 905m. Since most models study each pipe individually,

all pipes contribute equally to the model, so the results of the �tted models (Chapters 3, 4

and 5) could be improved if the available data had more uniform pipe lengths.

2.3 Statistical relationships between variables

In this section, the possible relationship between variables is investigated. Some conclusions

drawn in this section will support the choice of the covariates to be used in the implemented

multivariate models.

Pipe material and roughness are completely related, as can be seen in Table 2.2. Therefore it

is redundant to use both variables. Since it is the di�erent pipe material characteristics that

are believed to in�uence the failure rate, it was decided to use pipe material as a covariate

rather than roughness. However, the fact that roughness is a continuous variable makes this

attribute useful during some calculations, such as the estimation of the Pearson correlation

coe�cients.

In Figure 2.3 the roughness variable is used with the purpose to translate the relationship be-

tween other variables and pipe material. The high correlation coe�cient between roughness

and installation decade indicates a signi�cant dependence between the pipe material and the

installation decade variables. Figure 2.4 clearly shows that the three main pipe materials

are associated with a speci�c installation period. The most recent pipe material is HDPE,

having been installed mainly during the 2000 decade. Polyvinyl chloride pipes (PVC) present

a large range of installation years focused in the 1990 decade. Asbestos cement (AC) pipes

are the oldest pipes of the water supply system used in this study.

The high dependence between pipe material and the installation decade is a good reason to

use pipe material as grouping criteria and not as a covariate. When using two dependent
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2.3. Statistical relationships between variables

Table 2.2: Frequency table between roughness and material.

Roughness

Material 0 90 110 120 135 145

AC 1 0 0 3082 0 2

DCI 0 284 50 0 0 0

CI 0 0 4 0 2 0

GS 0 80 2 0 0 0

HDPE 4 1 0 0 6 3979

PVC 0 0 0 0 3975 0
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Figure 2.3: Correlation matrix plot.

variables as covariates it becomes di�cult to understand the e�ect that each variable has in

the failure distribution. Whereas if pipe material is used as grouping criteria, it is possible

to understand the e�ect of the age of pipes in failure rate, for each pipe material group.

From Figure 2.3 it appears that there are no other signi�cantly dependent variables. Number

of failures and failure rate variables were introduced in the correlation matrix to understand

how other pipe attributes may in�uence them. Failure rate is obtained for each pipe as

the number of failures over its length. Number of failures seems to be in�uenced by every
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Figure 2.4: Boxplot of installation year per material.

other variable. Besides failure rate, length is the variable that in�uences most the number of

failures. A high correlation coe�cient between these two variables is expected, as common

sense indicates that these two variables are strongly related. From the correlation matrix of

Figure 2.3 it is di�cult to indicate the pipe attributes that can in�uence the most the failure

rate.

2.4 E�ect of variables in failure rate

In this section, the variable e�ect on failure rate is analysed. For categorical variables, the

failure rate is estimated for each category, assuming it is constant. For continuous variables,

they are categorised �rst and then the failure rate is similarly estimated in each category, as

the categorical variables.

Assuming a Poisson process in each category, the failure rate is the maximum likelihood

estimate of the Poisson process rate (Equation 3.2, for further details on Poisson process,

see Chapter 3). The estimated failure rate, λ̂k, in some category Ck, is given by the number

of all failures in pipes of category Ck over the sum of the product of each pipe length by the

pipe observation time (Equation 2.1).

λ̂k =

∑
i∈Ck

ni∑
i∈Ck

tili
, (2.1)
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2.4. E�ect of variables in failure rate

where ni is the number of failures, li is the length and ti the observation period of pipe i.

In this thesis, throughout the text it will be used "failure rate" instead of "estimated failure

rate", hopping the reader will understand the context within it is used.

2.4.1 Pipe Material

Material is a categorical variable, therefore it is already divided in di�erent categories, it is

only needed to compute the failure rate for each material. The given results are presented

in Table 2.3.

Table 2.3: Failure rate per material.

Material
Failure rate Total Length

(No. of failures/km/year) (km)

AC 1.041 114.4

DCI 0.139 10.5

CI 3.100 0.035

GS 0.354 2.5

HDPE 0.253 126.1

PVC 0.396 113.7

Failure rate for CI pipes is not signi�cant, CI pipes represent less than 0.01% of the entire

water supply network. Therefore this material shall not be considered when pipe material

is taken into as a covariate or as grouping criteria. The pipe material with a smaller failure

rate is DCI, which, once more, is not as representative as the three main materials: AC,

HDPE and PVC. Asbestos cement is, in this case, the material that presents the highest

failure rate; it is also the oldest material that has been installed in this water supply network.

On the contrary, HDPE is the material with smaller failure rate of the most common pipe

materials of this water supply network; it is also the newer material that has been installed.

As discussed above, there is a strong correlation between pipe material and installation

decade variables. Thereby, it is needed to determine if this e�ect on failure rates is due to

the pipe material or the pipe installation decade (i.e. pipe age).
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Chapter 2: Exploratory data analysis

2.4.2 Pipe installation decade

To assess how the pipe age in�uences the failure rate, pipes were categorised according to

its installation decade, computing the failure rate for each pipe installation category.

Table 2.4: Failure rate per Installation decade.

Decade
Failure rate Total Length

(No. of failures/km/year) (km)

1940 1.35 11.5

1950 1.37 7.3

1960 1.24 40.3

1970 0.93 43.5

1980 0.48 58.0

1990 0.33 65.8

2000 0.23 134.1

2010 0.12 6.7

Table 2.4 shows a tendency for a decreasing failure rate with the installation decade. This

clearly indicates that the pipe ageing has a direct e�ect on failure rate. To understand if

this e�ect is due to pipe ageing or pipe material, the evolution of failure rate as a function

of installation decade is plotted in Figure 2.5, for each pipe material.

When dividing the failure data into several categories there is the risk of obtaining very small

categories, which are not representative. Plotting the failure rate in those categories could

lead to misinformation, thus categories with less than 1km total length were not considered in

Figure 2.5. For HDPE material, since more than 96% of HDPE pipes only were installed after

2000, the evolution of failure rate could only be plotted when computed for each installation

year, rather than considering the installation decade.

From Figure 2.5, it seems that there is a decreasing failure rate with the installation decade

(and year); this is more clear in AC material, which is represented by a wider installation

period. For PVC and HDPE this tendency is not visible. For HDPE material, since most

pipes are new (less than 10 years), the ageing is probably not yet noticeable. Polyvinyl

chloride material is represented in four decades, so the ageing factor would be expected.

One possible explanation could be that plastic materials deteriorate by mechanisms other

than the a�ecting AC material.
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Chapter 2: Exploratory data analysis

2.4.3 Pipe diameter

To evaluate the failure rate for di�erent pipe diameters, it was necessary to split the failure

data into di�erent diameter classes. The daiameter variable was divided into seven classes

of equal frequency. Failure rate was calculated for each class; results are presented in Table

2.5. The e�ect of diameter on failure rate is less visible than the e�ect of pipe installation

decade (i.e. pipe age). Nevertheless, it appears, from Table 2.5, that failure rate is lower for

larger pipe diameters.

Table 2.5: Failure rate per Diameter.

Diameter Failure rate Total Length

(mm) (No. of failures/km/year) (km)

[20,63] 1.14 46.4

(63,80] 1.05 33.1

(80,100] 0.69 60.0

[110] 0.23 104.0

(110,150] 0.70 32.9

(150,160] 0.36 36.9

(160,630] 0.23 53.9

2.4.4 Length

Empirical knowledge states that, when other variables are �xed, the number of failures is

proportional to the length of pipes and failure rate is the coe�cient of proportionality. That

is, failure rate is independent of pipe length. The failure data was divided in seven classes

such that the sum of the lengths of every pipe belonging to class Ck is the same for k = 1, .., 7.

From Table 2.6 it would appear that when pipes are longer failure rate tends to slightly

decrease. This dependence is more noticeable in longer pipes classes, i.e. the failure rate in

pipes that measure more than 123.6m is signi�cantly smaller. The failure rate in medium-

sized pipes is almost constant. If the failure data is to be divided into several categories with

homogeneous failure rates, Table 2.6 suggests that the pipes could be categorised in three

classes: small-sized pipes; medium-sized pipes; and long pipes.
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2.4. E�ect of variables in failure rate

Table 2.6: Failure rate per Length.

Length Failure rate Total length

(m) (No. of failures/km/year) (km)

[0.1,28.9] 0.88 52.7

(28.9,50] 0.63 52.4

(50,69.2] 0.59 52.6

(69.2,91.6] 0.61 52.4

(91.6,123.6] 0.57 53.4

(123.6,192.3] 0.44 52.5

(192.3,904.8] 0.31 52.4

2.4.5 Previous failures

To study how previous failures in�uence the future failure rate, the failure data had to be

divided in two sets. The �rst set has the failure records until the end of 2006 and the second

has only the records of the failures that have occurred afterwards in the same pipes. Having

divided the failure data, it is possible to compute the number of previous failures and the

past individual failure rate (failures before 2007) for each pipe and group all pipes according

to it. Then the mean future failure rate (failures from 2007 to 2011) can be computed for

each group.

Results presented in Tables 2.7 and 2.8 suggest that there is a clear relationship between the

occurrence of previous failures and the occurrence of future failures. This fact is even more

noteworthy when comparing the past individual failure rates with the mean future failure

rates (Table 2.8). The higher the past individual failure rate is, higher is the tendency to

fail in the future. This evolution shows a considerable jump between the class of no failing

pipes and the subsequent class. In fact, the failure rate in pipes without previous failures is

0.35, whereas failure rate in pipes with one or more failures is 1.19.

After this analysis it can be stated, for this speci�c case, that all variables have a direct e�ect

on the failure rate. As such, when possible, these variables should be taken into account in

the models considered in this study. The main attributes that in�uence the failure rate are

suggested to be material, previous failures (previous failure rate) and age of pipes. However,

since pipe age and pipe material are strongly dependent variables, the other studied pipe

attributes can be as important as one of these two variables.
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Chapter 2: Exploratory data analysis

Table 2.7: Failure rate associated with number of previous failures.

Number of Failure rate Total length

previous failures (No. of failures/km/year) (km)

0 0.35 281.8

1 0.89 34.0

2 1.31 13.3

3 2.48 4.1

4 0.70 2.7

5 to 7 3.02 2.6

Table 2.8: Failure rate associated with previous failures rate.

Previous failure rate Failure rate Total length

(No. of failures/km/year) (No. of failures/km/year) (km)

0 0.35 281.8

(0,1.23] 0.66 11.4

(1.23,2.014] 0.81 11.4

(2.013,2.92] 0.98 11.4

(2.92,4.825] 1.28 11.4

(4.825,556] 2.24 11.2
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Chapter 3

Single-variate model: Poisson process

The Poisson process is the only single-variate failure prediction model considered and im-

plemented in this thesis. The water supply network pipes were divided into several groups,

each associated with a speci�c failure probability distribution. Analysis conducted in Chap-

ter 2 on how di�erent variables in�uence failure rate was used further to de�ne the grouping

criteria.

In the �rst section of this chapter, the Poisson process is explained in detail. In the last

section it is applied to the failure data. Further, in Chapter 6, a thorough comparison

between this and the other implemented models is conducted.

3.1 De�nition of the Poisson process

According to Ross (2006) a Poisson process is a counting process {N(t), t ≥ 0} with rate γ

satisfying the following conditions:

∀γ ∈ R+ and ∀s, t, u, v ∈ R+, such that s < t < u < v,

1. N(0) = 0.

2. Independent increments, i.e. N(t)−N(s) ⊥⊥ N(v)−N(u).

3. N(t) ∼ Poisson(γt).

A property of the Poisson process that can be derived from conditions 2 and 3 is the sta-

tionary increments, i.e. N(t + s) − N(t) ∼ N(u + s) − N(u) ∼ N(s). Another property is

that the expected number of events is proportional to the observation time, where γ is the

coe�cient of proportionality and de�nes the intensity of the process.
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Chapter 3: Single variate model: Poisson process

When analysing failure data in urban water systems, it is assumed that the number of events

(i.e. failures) is also proportional to the length of pipes. If a pipe is twice as long, then the

expected number of failures is twice as high. The rate of the Poisson process in some pipe

i is γi = λli , where li is the length of the pipe. Therefore, the failure rate per km in the

overall system is represented usually by λ (number of failures / km / year), where λ is the

proportional coe�cient between the rate γi of the counting process Ni(t) and the length of

the respective pipe li.

To de�ne the distribution of the number of failures in each pipe, it is necessary �rst to

estimate λ, which can be obtained using the maximum likelihood method.

Considering a failure data n = {ni}i=1,..,m, with ni = number of observed failures in pipe i

during the observation time ti, the likelihood function (Equation 3.1) can be written using

the Poisson probability function.

L(λ|n, t, l) =
m∏
i=1

eλliti(λliti)
ni

ni!
, (3.1)

where t = {ti}i=1,..,m and l = {li}i=1,..,m.

The solution of the likelihood maximisation problem (applying the logarithm to Equation

3.1 and maximising the resulting function) is:

λ̂ = argmax
λ∈Θ

L(λ|n, t, l) =
∑m

i=1 ni∑m
i=1 tili

. (3.2)

If λ is estimated using the entire data set, then the failure rate will be the same for all pipes,

no matter their properties. Nevertheless, the data set can be divided based on the pipe

characteristics, such as material and diameter, creating di�erent categories. To create these

categories a preliminary analysis of data needs to be performed in order to de�ne categories

that gather pipes with similar failure rate. Once the pipe data is categorised, the failure rate

λk can be estimated for each category Ck using Equation 3.2.

After the λk is estimated for each category Ck, probabilities of failures can be calculated for

each pipe. The maximum likelihood estimator of the probability of a pipe i, belonging to

Ck, to su�er n failures during a time period t is presented in Equation 3.3 (by the invariance

property of maximum likelihood estimators).

̂P (Ni(t) = n) =
eλ̂klit

(
λ̂klit

)n
n!

. (3.3)
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3.2. Fitting of the Poisson single-variate model

The estimator of the expected number of failures of pipe i, during the time period t, is

presented in Equation 3.4. This expected value is used to predict the number of failures for

each pipe during the Poisson process validation.

Ê[Ni(t)] = λ̂klit. (3.4)

3.2 Fitting of the Poisson single-variate model

To assess the quality of the predictions obtained using the Poisson process, the failure data

were divided in two data sets. Failure distributions were estimated using the training set.

Failure predictions were carried out using the test set. Finally, failure predictions were

compared with the observations of the test set, in order to assess the quality of predictions

using the Poisson process. Two methods of choosing the training and test samples were

considered: temporal division and random division methods.

In the temporal division method the training set is composed of failures occurring before

01-01-2007 in all pipes installed before this date. The test sample comprises the failures that

happened between 01-01-2007 and 31-03-2011 in the same pipes of the training sample. This

method assess the ability to predict future failures in a water network with an organised

failure history.

The training sample of the random division method consists of a random 50% sample of all

pipes and all failures occurring in those pipes. Whereas the test sample is composed by the

other 50% pipes and all associated failures. Both training and test time windows go from

01-01-2001 to 31-03-2011.

This method is important to evaluate the ability of a model, based on a training sample, to

predict failures in a di�erent data set. When failure history of a water supply network is too

short (too few failures) to build predictions, a di�erent data set from another similar water

network can be used as a training sample. In order to have good prediction results, both

water supply networks need to be very similar, sharing the same pipe characteristics.

The analysis of how the pipe variables in�uence the failure rate, conducted in Chapter 2, is

taken into account to choose the variables to be used as grouping criteria.

The main variables to in�uence the failure rate were pipe material, pipe age and the previous

failures variables. However, pipe age and pipe material are strongly dependent variables, the

in�uence of the pipe ageing in each pipe material group was not clear; only in AC pipes the

e�ect is noticeable (Figure 2.5).
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Chapter 3: Single variate model: Poisson process

Table 3.1: Continuous variables categories.

Variables Class 1 Class 2 Class 3

Length (m) [0.1, 28.7] [28.8, 188.9] [189.6, 904.8]

Installation years [1940, 1969] [1970, 1979] [1980, 2006]

Diameter (mm) [20, 80] (80, 100] ∪ (110, 160] {110} ∪ [160, 630]

The previous failures variables (number of previous failures and past individual failure rate)

are very di�cult to use as grouping criteria. Previous failures variables, unlike the other

pipe attributes, depend on the failure history of the pipes. Therefore the use of this variable

requires the splitting of the training sample in two sets: one to build the failure history of

the pipes; and another to estimate how this failure history in�uences the failure rate, the

same way it was done in Chapter 2. This method is rather complex and presents the major

problem of splitting an already small failure data.

Thereby, the Poisson process is applied using pipe material, length and diameter variables.

As seen in the previous Chapter 2, GS and CI do not present a signi�cant sample, thus these

two materials will be removed from analysis and the study will be based only in AC, DCI,

HDPE and PVC pipes.

Over splitting the training data can lead to non-signi�cant categories, which can lead to

biased predictions. Therefore, it was decided to build only three di�erent categories for each

continuous variable. These categories were de�ned using the Ward's method of clustering.

Using the temporal division method of selecting the training and test samples, the continuous

variable categories are de�ned as presented in Table 3.1.

Once de�ned the di�erent categories, λk can be estimated for each category, using Equation

3.2. The resulting failure rate for each material, diameter and length categories are presented

in Table 3.2.

It can be seen that the failure rates tend to decrease when the length or diameter classes

increase. As expected, AC material presents the higher failure rate among the pipe material

categories considered, whereas HDPE appears to be the one with the lower failure rates.

Splitting the failure data in categories has the problem of creating small-size categories.

This may lead to non-signi�cant failure rates. The total length of pipes in categories with a

failure rate of 0 is, typically, very small, thus these failure rates are not signi�cant. The NA

value in Table 3.2 means that there are no pipes in that category, so no failure rate could be

estimated.
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3.2. Fitting of the Poisson single-variate model

Table 3.2: Failure rate per category.

Asbestos cement

Length 1 Length 2 Length 3

Diameter 1 1.70 1.37 1.12

Diameter 2 2.05 0.89 0.55

Diameter 3 0.40 0.33 0.26

Ductile cast iron

Length 1 Length 2 Length 3

Diameter 1 0 0 NA

Diameter 2 0.21 0.38 0

Diameter 3 0.93 0 0

HDPE

Length 1 Length 2 Length 3

Diameter 1 0.45 1.00 0

Diameter 2 0.42 0.52 0.22

Diameter 3 0.62 0.23 0.14

PVC

Length 1 Length 2 Length 3

Diameter 1 1.53 0.62 0.19

Diameter 2 0.98 0.45 0.35

Diameter 3 0.75 0.29 0.28

After estimating λk for each category, the distribution of the number of failures is �tted

for each pipe. Then, the expected number of failures occurring in the test sample can

be estimated using Equation 3.4. These predictions can be compared with the observed

failures, in the following way: all pipes are sorted according to its expected number of

failures (predicted failures); after sorting, 0.1-quantiles of the predictions are built; for each

prediction quantile the mean of the actual observed failures is compared with the mean of

the predicted failures.

This method, used in Le Gat and Eisenbeis (2000), allows to understand the ability to

detect pipes with higher likelihood of failing. Figure 3.1 presents these results, in which dots

represent the average of the number of observed failures in each 0.1-quantile and the red line

represents the average of the predicted number of failures in each 0.1-quantile.

In Figure 3.1, the mean number of observed failures show a clear tendency to increase with

the quantiles of predicted failures. The observed failures of the last quantile really stands out

from the lower predicted failures quantiles. From these results, it appears that the Poisson

process can detect the pipes more prone to fail. However, there is a clear overestimation in

the last four quantiles.

This overestimation may have to do with the distinct failure rates of the training and the

test samples. There were 0.59 failures/km/year in the training sample, whereas there were

only 0.49 failures/km/year in the test sample. Since there is such a signi�cant di�erence

between both failure rates, it is only natural that the Poisson process (which assumes the

same behaviour in both samples) tends to overestimate the number of failures.
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Figure 3.1: Poisson process predictions.

Another test was carried out using the random division method to build the training and

test samples. The same categories used in the previous method (Table 3.2) were chosen

as grouping criteria. A plot comparing the number of observed failures and the predicted

number of failures for each prediction quantile (comparison method suggested by Le Gat

and Eisenbeis (2000)) is presented in Figure3.2.

In Figure 3.2 it seems that, in addition to detect the pipes that are more likely to fail,

the Poisson process presents an accurate prediction in almost every quantile. The reason

that the Poisson process presents better results using this method(Figure3.2) rather than

the time division method (Figure 3.1) is that in the random division method the training

and test samples show similar behaviours. The failure rate in the test sample is of 0.53

failures/km/year and the failure rate in the training sample is of 0.49 failures/km/year.
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Figure 3.2: Poisson process predictions in random sample.
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Chapter 4

Weibull accelerated lifetime model

The second failure prediction model to be �t is an accelerated lifetime model. This failure

prediction model greatly di�ers from the Poisson process, as it models the time between

failures rather than the number of failures. This multivariate model is described in detail

in the next section. A failure prediction tool suggested by Le Gat and Eisenbeis (2000) is

described, presenting some possible issues and suggesting some improvements. Finally, the

Weibull accelerated lifetime model (WALM) is applied to the failure data studied in Chapter

2 and some prediction plots are presented in the last section.

4.1 De�nition of the Weibull accelerated lifetime model

Accelerated lifetime models relate the logarithm of the time to failure with a linear combi-

nation of p covariates, x = [1 x1 x2 ... xp], and an error term, Z.

lnT = xᵀβ + σZ, (4.1)

where β = [β0 β1 ... βp] are unknown regression parameters and σ is a scale parameter.

Equation 4.1 shows that the distribution of the random variable Z de�nes the distribution

family of T . In particular, if Z follows the standard Gumbel distribution, then T will be a

Weibull random variable, as proved from Equation 4.2 to Equation 4.4.

P{Z > z} = e−e−z

. (4.2)

P{T > t} = P{lnT > ln t} = P{Z >
ln t− xᵀβ

σ
}. (4.3)
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P{T > t} = e−e
ln t−xᵀβ

σ = e
−
(

t

exᵀβ

) 1
σ

. (4.4)

From Equation 4.4, it can be seen that the random variable T follows a Weibull distribution,

i.e. T ∼ Weib(σ−1, ex
ᵀβ).

The Weibull distribution has the great advantage of having simple survival and hazard

functions. This allows to easily understand the direct e�ect of the covariates in the hazard

function. Moreover, this model is equivalent to a proportional hazard model as proved

in Cox and Oakes (1984), since the covariates act multiplicatively in the hazard function

(Equation 4.5).

h(t) =
1

σ
t
1
σ e−

xᵀβ
σ . (4.5)

4.2 Estimation of parameters

To �t the model (Equation 4.1), parameters σ and β should be estimated. These parameters

were obtained maximising the appropriate likelihood function.

In this model, the sample was composed by the time between recorded failures ti and the

explanatory covariates xi, for each individual i. Nevertheless, when conducting survival

analysis, the decision variable, time between failures, is, in many cases, right censored. In

all pipes, the time that they survived without failing until the end of the observation period

is a right censored time. It is called a right censored time, because it was not ended by an

observed failure, hence it is only known that the time between failure is greater than the

censored time.

Although the time between failures is not observed, discarding these censored times would

lead to a biased survival results. Therefore these right censored times should enter in the

likelihood function. However, instead of entering with the Weibull density function, right

censored times will enter with the Weibull survival function, since the only available infor-

mation is that the due pipe survived that right censored time.

In this study it is assumed that water supply networks are repairable systems, one pipe may

present several times between failures, whether they are observed or censored. Each of these

times will enter in the model independently. Whether they occurred in the same pipe or not,

they only depend on the covariates of the respective pipe. Hence, using a sample of observed

times, each associated with p covariates, {(ti,xi)}i=1,...,n, and a sample of censored times,
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4.3. Prediction of the number of failures

each associated with p covariates, {(cj,yj)}j=1,...,m, the likelihood function can be expressed

using the Weibull density and survival functions (Equation 4.6).

L(σ,β|t, c,X,Y ) =
n∏

i=1

f(ti|σ,β,xi)
m∏
j=1

S(ci|σ,β,yj). (4.6)

L(σ,β|t, c,X,Y ) =
n∏

i=1

1

σex
ᵀ
iβ

(
ti

ex
ᵀ
iβ

) 1
σ
−1

e
−
(

ti

e
xᵀ

i
β

) 1
σ

m∏
j=1

e
−

 cj

e
yᵀ

j
β

 1
σ

, (4.7)

where X =

[ x1
x2
...
xn

]
and Y =

[ y1
y2...
ym

]
are the matrices of covariates.

Applying the logarithm, Equation 4.8 is obtained.

l(σ,β|t, c,X,Y ) =
n∑

i=1

ln
1

σex
ᵀ
iβ

+

(
1

σ
− 1

)
(ln ti − xᵀ

iβ)−
(

ti

ex
ᵀ
iβ

) 1
σ

−
m∑
j=1

(
cj

ey
ᵀ
jβ

) 1
σ

.

(4.8)

Unlike the Poisson process, the maximum likelihood estimators can not be analytically ex-

pressed. Therefore they must be obtained through numerical maximisation.

In this work, the estimation of parameters was done using function survreg of the survival

package of the statistical software R.

The distribution of the times between failures is estimated for each pipe, and so the proba-

bility of surviving during some time can also be estimated, according to the survival function

expressed in Equation 4.4.

4.3 Prediction of the number of failures

It is very important to estimate the expected number of failures in a repairable system,

which allows calculating the expected total cost of repairs in the repairable system during

some time period. One of the biggest drawbacks of the Weibull distributions is that their

convolution can not be analytically obtained. Thus, the distribution of the number of failures

during some time can not be derived.

In order to predict the number of failures, Le Gat and Eisenbeis (2000) presented an algo-

rithm based on Monte Carlo simulations, described in this section.
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The concept behind Le Gat and Eisenbeis (2000) algorithm is to generate a large number of

simulations in each pipe and, consequently, determine the mean number of failures obtained

in all simulations for each pipe.

To build simulations over a pipe i, with covariates xi, it is necessary to generate times

between failures. As seen before, the survival function for this pipe is given by Equation 4.4,

that can be rewritten as Equation 4.9, where ex
ᵀ
iβ is replaced by η.

S(t) = e−(
t
η )

1
σ

. (4.9)

Solving the survival function S(t) as a function of t, the expression to generate random times

is obtained (Equation 4.10).

t = −η (lnS)σ . (4.10)

The Monte Carlo simulations in pipe i will be built as follows. Successive times between

failures are generated until their sum overlaps the prediction time window. Subsequently,

the number of generated times is recorded, ignoring the last one, since it falls outside the

prediction window. This experiment is repeated 1,000 times and �nally the predicted number

of failures will be the mean of all 1,000 simulated numbers of failures. This procedure is

repeated for all pipes, obtaining a number of predicted (expected) failures for each one.

4.3.1 Improvements of the WALM prediction process

In this section, it is suggested an improvement of the failure prediction process presented by

Le Gat and Eisenbeis (2000). Figure 4.1 shows the time line of a pipe from the beginning of

the failure history until the end of the prediction window.

Figure 4.1: Time line and failure instants.

Let:

• t0 is the instant where failure history begins for some pipe i;

• tl is the time of the last recorded failure occurring in pipe i;

• ts and tf represent the start and �nish instants of the prediction window, respectively;
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4.3. Prediction of the number of failures

• u is the time between tl and ts.

The approach presented in Le Gat and Eisenbeis (2000) ignores the elapsed time u between

the last recorded failure and the beginning of the prediction window. Therefore, the �rst

generated time to failure is counted from ts, using Equation 4.10. However, since the times

between failures follow a Weibull distribution, the failure counting process does not have

the stationary increments property, that is T |T > u and T + u are not equally distributed.

The improvement consists in generating a time to failure from tl using the distribution of

T |T > u as described in Equations 4.11 and 4.12.

S(t, u) = P{T > t|T > u} =
e−(

t
η )

1
σ

e−(
u
η )

1
σ
= e

−
(
t
1
σ −u

1
σ

)
η−

1
σ
. (4.11)

t =
(
−η

1
σ lnS + u

1
σ

)σ
. (4.12)

Equations 4.11 and 4.12 are used only to generate the �rst predicted time of failure, since

u will be 0 when generating the following times to failure. When a pipe has no recorded

failures it is assumed that the time of last failure is equal to the beginning of the pipe history,

that is tl = t0 and u = ts − t0.

4.3.2 Dynamic variables and prediction of failures

The number of failures prediction process can become more complex if some of the covariates

are dynamic, i.e. they can change during the process. One example of this type of covariate

is the number of previous failures, which is considered one of the most important variables.

This covariate should thus be updated whenever a new time to failure is generated. Therefore,

xi is not constant during the whole simulation, it is updated in every iteration of the failures

prediction process.

Issues using the covariate number of previous failures

When applying the WALM regression, one of the most important covariates that was found

was the number of previous failures. However, a new problem arose during the failure

prediction process, related to this covariate. The Weibull accelerated lifetime model assumes

that the covariates in�uence exponentially the hazard function. The expected time to failure

of some pipe is given by Equation 4.13.
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Γ(1 + σ)ex
ᵀβ = Γ(1 + σ)ex

∗ᵀβ∗

exnopfβnopf , (4.13)

where xnopf represents the number of previous failures covariate; βnopf is the coe�cient

associated to xnopf ; x∗ is the covariates vector without xnopf ; and β∗ is the coe�cients

vector without βnopf .

When applying the Monte Carlo simulation to predict the number of failures of a pipe, in

each iteration the expected value of the next time to failure drops exponentially, since xnopf

increases (Equation 4.14).

E [T |xnopf + 1]

E [T |xnopf ]
=

Γ(1 + σ)ex
∗ᵀβ∗

e(xnopf+1)βnopf

Γ(1 + σ)ex
∗ᵀβ∗

exnopfβnopf

= eβnopf . (4.14)

Therefore, the expected sum of times to failure is given by Equation 4.15.

E [
∑∞

k=0 Tk] =
∞∑
k=0

E [T |xnopf = k] =
∞∑
k=0

E [T |xnopf = 0]
(
eβnopf

)k
= E [T |xnopf = 0]

∞∑
k=0

(
eβnopf

)k
. (4.15)

Since the failure rate should increase with the number of previous failures, it is expected that

βnopb < 0, hence eβnopb < 1. And so, the expected sum of the times between failures is a sum

of a geometric progression of ratio r = eβnopf < 1, which means that the series is convergent

to 1
1−r

. In this case, if E [T |xnopf = 0] and βnopf are su�ciently small, there is no guaranty

that the sum of the simulated times between failures overlaps the prediction window. So,

the Monte Carlo simulation can enter a never ending cycle.

Issues using pipe age covariate

Other covariates which are continuously changing with t may increase the method complex-

ity; an example of this covariate is pipe age.

Although the pipe age variable is one of the most important explanatory variables, its intro-

duction in the model increases the complexity of the failure prediction process. Unlike the

number of previous failures covariate, which only needs to be incremented after each failure

time is generated, the age of the pipe variable is continuously increasing with T . So, T can

not be generated with a �xed distribution, since this distribution will continuously change

throughout the duration of T .
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4.3. Prediction of the number of failures

One way to avoid this issue is to use a �xed covariate that translates the age of the pipe

variable, e.g. the installation year or decade. However, as good and simple this solution

may seem, the use of a �xed covariate to translate a time dependent covariate may not be

realistic. By using the installation year as a covariate, the predicted number of failures from

2006 to 2011 will be the same as the predicted number of failures from 2020 to 2025.

Pipe age at last failure approach. The pipe age at last failure approach considers the

age of the pipe at the last recorded failure as a covariate. This way, the covariate only needs

to be updated at every iteration of the failures prediction process, as the number of previous

failures covariate. One disadvantage of this approach is the fact that the pipe age covariate

is updated only with the occurrence of a failure. This means that the age of the pipe will

not act on the failure distribution as long as the pipe does not fail.

New approaches to use dynamic variables

In order to deal with the issues regarding the number of previous failures and the pipe age

covariates, three new approaches are suggested:

Logarithm of the number of previous failures. This approach is to apply the log-

arithm to the number of previous failures. Instead of considering xnopf as covariate, it is

considered ln(1 + xnopf ). With this new covariate, in each iteration of the failure prediction

process the expected time to the next failure no longer drops exponentially (Equation 4.16).

E [T |xnopf + 1]

E [T |xnopf ]
=

eβnopf ln(xnopf+1+1)

eβnopf ln(xnopf+1)
=

(
xnopf + 2

xnopf + 1

)βnopf

. (4.16)

The expected time to failure is expressed in Equation 4.17.

E [T |xnopf = k] = E [T |xnopf = 0]

(
k∏

i=1

i+ 2

i+ 1

)βnopf

= E [T |xnopf = 0]

(
k + 2

2

)βnopf

. (4.17)

Assuming that βnopf < 0, then the sum of expected times between failures is presented in

Equation 4.18.

∞∑
k=0

E [T |xnopf = k] = E [T |xnopf = 0]
∞∑
k=0

(
2

k + 2

)|βnopf |

. (4.18)
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Equation 4.18 is a divergent series if |βnopf | ≤ 1. So only if βnopf ≥ −1 it can be guaranteed

that the Monte Carlo simulation will halt.

Finite covariate instead of discrete number of previous failures. A simpler solution

of the number of previous failures covariate issue, is to use a �nite valued covariate. For

instance, a binary covariate pf , where pf = 1 if the pipe has failed in the past and pf =

0 otherwise. The binary covariate may not give the same information that the discrete

number of previous failures, nevertheless, it guarantees that the Monte Carlo simulations

halt, whatever the estimated βnopf .

Age classes approach. A new approach is presented in order to deal with the pipe age

variable. The aim of this approach is to allow the ageing e�ect on the failure distribution,

independently of the occurrence of previous failures.

The age class approach categorises the pipe age variable into di�erent classes, taking into

account how this variable in�uences the failure rate. No many classes should be considered,

in order to keep the model's simplicity, e.g. three classes. Subsequently, for each pipe i, the

prediction window is divided in three subwindows, such that pipe i will belong to the same

age class in each subwindow. The time elapsed from the previous failure to the instant where

pipe i changes from age class k to class k + 1 is denoted by sk.

The approach assumes that each age class presents a di�erent distribution of the time between

failures. The time between failures in age class k is represented by Tk. In order to estimate the

distribution of Tk, the distribution parameters are obtained using the maximum likelihood

estimation (Equation 4.8). However, in this approach, the failure times entering the log-

likelihood function will only be the times elapsed in age class k; this means that if some pipe

starts the observation in age class k but only fails in class k + 1, then the time elapsed in

class k will enter in the regression of Tk as a right censored time and the time elapsed in

class k + 1 will enter in the regression of Tk+1 as an observed time.

The failure prediction process will behave as before in each class. However, when a pipe is

in class k and the next generated time t (using the distribution of Tk) exceeds sk then t is

discarded and a new time will be generated using the distribution of Tk+1 from sk.

This approach presents a major disadvantage: when dividing the failure data into di�erent

classes it becomes di�cult to understand the age e�ect on the failure rate. Recent pipe

materials are only represented in the �rst age classes. This approach makes impossible to

predict the number of failures in these pipes when they belong to older classes. For example,

it may be impossible to predict failures in HDPE pipes for the decade 2020, because HDPE

pipes during that time will already belong to older age classes. However, if the pipe age
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4.4. Fitting of the Weibull accelerated lifetime model

variable could enter the model as a numeric covariate, then, even if the behaviour of HDPE

is unknown at the age of 20 years, a prediction could be computed based on the ageing of

HDPE in the early stages.

4.4 Fitting of the Weibull accelerated lifetime model

In order to assess the quality of predictions of the Weibull accelerated lifetime model, this

model was applied to the available failure data. As done in Chapter 3, the distribution

parameters are estimated using the training sample and the failure predictions are conducted

in the test sample.

The two failure data division methods used in Chapter 3 were used to de�ne the training

and test samples: the temporal division and the random division methods.

The covariates used in all WALM predictions were: ln length, diameter and previous failures

(binary variable). The logarithm is applied to the length variable, because it is believed that

the hazard rate should be proportional to the length of pipe. Entering with ln length the

hazard rate will be: h(t) = h∗(t) (xlength)
−βlength . So, if βlength is close to −1 the hazard rate

will be proportional to the length of pipe.

The pipe material and the pipe age variables entered the model di�erently according to

the WALM approaches. Two di�erent approaches were tested: the pipe age at last failure

approach and the age class approach. In the pipe age at last failure approach, the pipe

material was used as grouping criteria and the pipe age at the last failure was used as a

numeric covariate. In the age class approach the pipe age was used as grouping criteria, as

explained in the according section, whereas pipe material entered the model as a covariate.

The �rst tests were carried out using the temporal division method. So the training sample

is composed of the failures occurring before 01-01-2007 and the test sample is composed of

the failures occurring after this date.

Table 4.1 shows the estimated parameters using the pipe age at last failure approach, for each

pipe material. In Table 4.1, S.E. represents the standard error of each estimated parameter.

The p-value, for each parameter, is obtained using the Wald test, in which the null hypothesis

is zero. The scale parameter, σ, is constrained to being positive and its proposed value is one,

thus the Wald test is carried out using lnσ with null hypothesis zero. In order to evaluate

the model signi�cance, a likelihood ratio test is conducted, where LR represents the ratio

of the maximum likelihood value using only the parameters β0 and σ and the maximum

likelihood value using all regression parameters.

The most signi�cant covariates seem to be the previous failures indicator and the logarithm
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of length, whereas the less signi�cant variable is pipe diameter. To be noticed that the

coe�cient values associated with ln length are usually close to −1, thus the hazard function

is almost proportional to the length of pipes. Coe�cients of DCI pipes have higher p-values

and the likelihood ratio test presents a higher p-value than other materials. This is probably

due to the fact that DCI pipes compose a small failure data. The �tness of the model seems

higher in AC pipes, where all variables are statistically signi�cant, probably because this

material is the one that presented more failures.

Table 4.1: Regression estimates and p-values of Wald tests

HDPE

Parameters Estimate S.E. θ̂/S.E. p-value

β0 17.808 1.004 17.73 <0.0001

Age at last failure (βage) -0.046 0.021 -2.23 0.026

Diameter (βdiam) 3.1e-03 0.003 0.99 0.322

ln Length (βlnlength) -1.225 0.167 -7.33 <0.0001

Previous failures (βpf ) -4.052 0.465 -8.72 <0.0001

lnσ 0.688 0.081 8.53 <0.0001

σ 1.99

−2 ln (LR) 210

p-value 0.0001

PVC

Estimate S.E. θ̂/S.E. p-value

15.187 0.574 26.44 <0.0001

-0.026 0.009 -2.92 0.004

0.001 0.003 0.27 0.785

-1.002 0.088 -11.33 <0.0001

-1.714 0.222 -7.71 <0.0001

0.446 0.054 8.29 <0.0001

1.56

404

<0.0001

AC

Parameters Estimate S.E. θ̂/S.E. p-value

β0 13.337 0.368 36.28 <0.0001

Age at last failure (βage) -0.020 0.005 -4.07 <0.0001

Diameter (βdiam) 0.007 0.001 5.79 <0.0001

ln Length (βlnlength) -0.871 0.060 -14.53 <0.0001

Previous failures (βpf ) -1.533 0.131 -11.71 <0.0001

lnσ 0.441 0.035 12.73 <0.0001

σ 1.55

−2 ln (LR) 759

p-value <0.0001

DCI

Estimate S.E. θ̂/S.E. p-value

15.557 2.839 5.48 <0.0001

0.082 0.097 0.85 0.394

0.001 0.005 0.19 0.846

-0.768 0.436 -1.76 0.078

-4.836 1.687 -2.87 0.004

0.614 0.279 2.20 0.028

1.85

15.7

0.0035

The comparison method, used in Le Gat and Eisenbeis (2000) and in Chapter 3, to compare

predictions with the observed records is used; results for each pipe material are presented in

Figure 4.2. Predictions are very accurate for all materials except for DCI pipes. In DCI pipes

the model can not detect e�ectively pipes with higher likelihood of failing, this is probably

due to the short failure records of this pipe material.

In Figure 4.3 all pipe materials are assembled and predictions are grouped. Comparing both

Figures 4.3 and 3.1, WALM seems to be a more accurate model than the Poisson process,
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Figure 4.2: WALM predictions in each material category.

nevertheless a more thorough comparison of all models is conducted in Chapter 6.

The age class approach was also tested using the same training and test samples. The

prediction results are plotted in Figure 4.4. Results are very similar, although there is a

small overestimation in pipes of the last quantile. Since this approach is signi�cantly more

complex and results do not seem better, the age classes approach will be dropped in further

analysis of the WALM.

The third test was conducted using the random division method of the failure data, that

is: the training sample is composed of a 50% random sample of the water supply system

pipes; and the test sample is composed of the other 50% of the water supply system. In

this random division method only the pipe age at last failure approach was tested. The

estimated coe�cients were very similar to the ones presented in Table 4.1 and thus they

are not presented. The plot of the mean observed failures for each prediction 0.1-quantile is
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Figure 4.3: WALM predictions in all pipes.

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Forecasted and observed failures per quantile

Forecasted failures quantiles (%) 

M
ea

n 
nu

m
be

r 
of

 fa
ilu

re
s 

(a
fte

r 
20

06
)

Line: predicted failures
Points: observed failures

Figure 4.4: WALM predictions using age classes.

presented in Figure 4.5. The results presented in Figure 4.5 are very accurate, with a slight

underestimation in the last prediction quantile.

In all WALM prediction plots (Figures 4.3, 4.4 and 4.5) the mean number of observed failures

of the last quantile always stands out from the previous quantiles. This indicates that this
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Figure 4.5: WALM predictions in random sample of pipes.

failure prediction model detects e�ciently pipes with higher risk of failing.
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Chapter 5

Linear extended Yule process

The third model �tted in this study is the linear extended Yule process presented in Le Gat

(2009). This is a multivariate counting process, where the process rate is a linear function

of the number of past failures, depending on the age of pipes and in�uenced by covariates.

The logarithm of the likelihood function as presented in Le Gat (2009) is described and some

simpli�cations are suggested. Results of the �tting of the linear extended Yule process are

plotted in the last section.

5.1 De�nition of the linear extended Yule process

The Linear Extended Yule Process (LEYP) is based on the pure birth process. Let N(t)

be the number of individuals in a Yule process with a single initial progenitor and birth

intensity λ > 0. The pure birth process or classical Yule or Yule-Furry process is de�ned by:

∀t∈R+∀n∈N , λ ∈ R+

N(0) = 1

P{N(t+ dt)−N(t) = 1|N(t) = n} = nλdt
(5.1)

This process presents several interesting properties:

(i) it has the Markov property, i.e. the distribution of future individuals depends only on

the number of individuals at the present time;

(ii) there are at most one occurrence at some time instant;
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(iii) the distribution of the number of individuals follow a Geometric distribution.

The last property (iii) can be derived from the solution of the following di�erential equations:

dP{N(t) = n} = (−nλP{N(t) = n}+ (n− 1)λP{N(t) = n− 1}) dt. (5.2)

Using the initial condition P{N(0) = 1} = 1, the solution of Equation 5.2 is given by

Equation 5.3.

P{N(t) = n} = e−λt(1− e−λt)n−1. (5.3)

For a general n0, the counting process with initial condition N(0) = n0 can be thought as the

sum of n0 simple processes. Thus, the distribution of the number of individuals will be the

sum of n0 independent Geometric distributions, which is equivalent to a Negative Binomial

(n0, e
−λt), with probability function presented in Equation 5.4.

P{N(t) = n} =

(
n− 1

n− n0

)
e−λn0t(1− e−λt)n−n0 , n = n0, n0 + 1, ... (5.4)

In order to adapt this pure birth process to failure data, several changes were applied by

Le Gat (2009):

• N(t) represents the number of failures occurring in a pipe, in the time interval [0, t].

• The process starts at 0, since the number of failures right after the installation of the

pipe is 0, i.e. N(0) = 0.

• The rate of the process is free to vary with time, since it is common knowledge that

time in�uences failure rate in water systems, that is, λ = λ(t).

• The intensity of the counting process is no longer forced to be proportional to the

number of previous failures.

With these three new changes, is de�ned the Non-Homogeneous Birth Process (NHBP), with

rate λ(t) ≥ 0,

∀t∈R+∀n∈N , αn ∈ R+ , λ(t) ∈ R+

N(0) = 0

P{N(t+ dt)−N(t) = 1|N(t) = n} = αnλ(t)dt
(5.5)
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5.1. De�nition of the linear extended Yule process

The probability function of the counting process is the solution of the di�erential Equation 5.6,

using Pn(s) = P{N(t+ s)−N(t) = n|N(t) = j}.

dPn(s) = (1− αj+nλ(t+ s))Pn(s)ds+ αj+n−1λ(t)Pn−1(t+ s)ds; P (N(0) = 0) = 1. (5.6)

Solving Equation 5.6 and by induction on n, the probability function of

N(t+ s)−N(t)|N(t) = j is presented in Le Gat (2009) and is given by Equation 5.7.

P{N(t+ s)−N(t) = n|N(t) = j} =

(
n−1∏
k=0

αj+k

)
n∑

k=0

e−αj+k(Λ(t+s)−Λ(t))∏n
l=0,l ̸=k (αj+l − αj+k)

. (5.7)

The LEYP is a particular case of the NHBP, in which the function αj = α(j) = (1 + αj),

with α ∈ R+.

It is proven by Le Gat (2009) that the probability function of the LEYP is described by

Equation 5.8.

P{N(t)−N(s) = n|N(b)−N(a) = j} =

=
Γ(α−1 + j + n)

Γ(α−1 + j)n!

(
µ(b)− µ(a) + 1

µ(t)− µ(s) + µ(b)− µ(a) + 1

)α−1+j (
µ(t)− µ(s)

µ(t)− µ(s) + µ(b)− µ(a) + 1

)n

,

(5.8)

where µ(t) = eαΛ(t) and Λ(t) =
∫ t

0
λ(u)du.

Equation 5.8 implies that the distribution of the number of failures of a LEYP is a continuous

extended Negative Binomial, that is,

{N(t)−N(s)|N(b)−N(a) = j} ∼ NB

(
α−1 + j,

µ(b)− µ(a) + 1

µ(t)− µ(s) + µ(b)− µ(a) + 1

)
.

One important feature of a failure prediction model is to allow distinguishing the probability

of failure in di�erent pipes, using their di�erent attributes. Thus the intensity function can

be based on pipe covariates. Le Gat (2009) suggests an intensity function built upon the

Weibull power law and the Cox factor,

λ(t) = δtδ−1ex
ᵀβ. (5.9)
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For the intensity function described in Equation 5.9,

Λ(t) = tδex
ᵀβ, (5.10)

µ(t) = eαt
δex

ᵀβ
. (5.11)

5.2 Estimation of parameters

The LEYP parameters were estimated through the maximum likelihood method. Le Gat

(2009) builds the likelihood function and presents the log-likelihood function for the overall

system, Equation 5.12.

lnL(α, δ,β|T ,X,n, a,b) =
m∑
i=1

(
ni lnα+ lnΓ

(
α−1 + ni

)
− ln Γ

(
α−1
)

−
(
α−1 + ni

)
ln (µ(bi)− µ(ai) + 1) +

ni∑
j=1

lnλ(tij) + αΛ(tij)

)
,

(5.12)

where:

m is the number of pipes;

n = [n1 ... nm], with ni representing the number of failures in pipe i;

a = [a1 ... am], with ai representing the age of pipe i at the beginning of observations;

b = [b1 ... bm], with bi representing the age of pipe i at the end of observations;

X = [x1 ... xm], with xi representing the covariate vector of pipe i;

T = [t1 ... tm] with tij representing the age of pipe i at the jth failure.

The estimated parameters were obtained through the numerical maximisation of Equation

5.12. However, the log-likelihood function presents some computational problems. In Equa-

tion 5.11, the function µ(t) can easily reach very high values; for common values of bi and

ai, µ(bi) and µ(ai) are considered in�nity, due to exceeding the machine precision, and thus

ln (µ(bi)− µ(ai) + 1) can not be computed.

In order to solve this problem a simpli�cation of the log-likelihood function is suggested. Let

h(ai, bi,xi) = ln (µ(bi)− µ(ai) + 1). h(ai, bi,xi) can be simpli�ed as follows:
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h(ai, bi,xi) = ln (µ(bi)− µ(ai) + 1)

= ln

(
eαbi

δex
ᵀ
i
β
− eαai

δex
ᵀ
i
β
+ 1

)
= ln

(
eαbi

δex
ᵀ
i
β
(
1− eαai

δex
ᵀ
i
β−αbi

δex
ᵀ
i
β
+ e−αbi

δex
ᵀ
i
β
))

= αbi
δex

ᵀ
iβ + ln

(
1− eαe

xᵀ
i
β(aδi−bδi ) + e−αbi

δex
ᵀ
i
β
)
. (5.13)

Equation 5.13 is an important simpli�cation: when bi assumes high values, eαe
xᵀ

i
β(aδi−bδi )

and e−αbi
δex

ᵀ
i
β

will be close to zero and, thus, h(ai, bi,xi) is computed as αbi
δex

ᵀ
iβ.

Therefore the �nal expression of the log-likelihood function to be maximised is given by

Equation 5.14.

lnL(α, δ,β|T ,X,n, a,b) =
m∑
i=1

(
ni lnα + g(α, ni)−

(
α−1 + ni

)
h(ai, bi)

+ ni ln δ + nix
ᵀ
iβ + (δ − 1)

ni∑
j=1

ln tij +

ni∑
j=1

αtδije
xᵀ

iβ
)
, (5.14)

where h(ai, bi,xi) is given by Equation 5.13 and g(α, ni) is given by Equation 5.15.

g(α, ni) = ln Γ
(
α−1 + ni

)
− ln Γ

(
α−1
)
=

ni−1∑
k=0

ln
(
α−1 + k

)
. (5.15)

With the parameters estimated, the probabilities of failure can be computed. For instance,

the probability of some pipe to fail during [s, t], knowing its failures during [a, b], is given by

Equation 5.16.

P{N(t)−N(s) > 0|N(b)−N(a) = j} = 1− P{N(t)−N(s) = 0|N(b)−N(a) = j}

= 1−
(

µ(b)− µ(a) + 1

µ(t)− µ(s) + µ(b)− µ(a) + 1

)α−1+j

.

(5.16)

The expected value can also be computed in order to compare with the results obtained with

the WALM and the Poisson process:
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E[N(t)−N(s)|N(b)−N(a) = j] =
(
α−1 + j

) µ(t)− µ(s)

µ(b)− µ(a) + 1
. (5.17)

5.2.1 Test of signi�cance of the estimated parameters

A statistical hypothesis test was conducted to establish the signi�cance of each estimated

parameter of LEYP. The test was based on the likelihood ratio test, using the null hypothesis

of each parameter: α = 0; δ = 1; βj = 0, ∀j=0,..,p.

For every parameter, except α, the log-likelihood function of the null hypothesis was obtained

directly from Equation 5.14, replacing the value of the parameter by the null hypothesis. To

test the signi�cance of α the null hypothesis leads to a Non-homogeneous Poisson process

(NHPP), with intensity λ(t), and a di�erent likelihood function.

The likelihood function of the NHPP for each pipe is:

L(α, δ,β|t,x, n, a, b) =

R
t∈[a,b]

(P {N(t+ dt)−N(t) = 1})∆N(t) (1− P {N(t+ dt)−N(t) = 1})1−∆N(t) , (5.18)

where:

∆N(t) = N(t)−N(t−);

P {N(t+ dt)−N(t) = 1} = λ(t)dt;

Rt∈[a,b]
de�nes the product integral in [a, b].

L(α, δ,β|t,x, n, a, b) =
n∏

j=1

λ(tj)
n∏

j=0
R

t∈[tj ,tj+1]

(1− λ(t)dt), (5.19)

with t0 = a and tn+1 = b.

Using the product integral property Rt∈[a,b]
(1 − dA(t)) = e−

∫ b
a dA(t), Equation 5.20 is ob-

tained.

L(α, δ,β|t,x, n, a, b) =
n∏

j=1

λ(tj)
n∏

j=0

e
−
∫ tj+1
tj

λ(t)dt

=

(
n∏

j=1

λ(tj)

)
e−

∫ b
a λ(t)dt

=eΛ(a)−Λ(b)

n∏
j=1

λ(tj). (5.20)

46



5.3. Fitting of the linear extended Yule process

The log-likelihood function for the NHPP, using the failure records of all pipes, is presented

in Equation 5.21.

lnL(α, δ,β|T,X,n, a,b) =
m∑
i=1

(
Λ(ai)− Λ(bi) +

ni∑
j=1

lnλ(tij)

)
. (5.21)

Once de�ned the likelihood function for the null hypothesis for each estimated parameter,

the likelihood ratio, LR, can be computed.

LR = ln
sup{L(θ)|θ ∈ Θ0}
sup{L(θ)|θ ∈ Θ}

. (5.22)

LR represents the ratio between the values of the maximum likelihood of the null model

and the complete model. Wilks proved that −2 lnLR is asymptotically distributed to a χ2
k,

where k is the di�erence between the dimensionality of Θ and Θ0. In this case, the p-value,

for each parameter, is obtained as P{χ2
1 > −2 lnLR}.

5.3 Fitting of the linear extended Yule process

The �rst test was carried out de�ning the training and test data sets as a temporal division

of the failure data. The training set includes failures before 2007 and the test set includes

all failures from 01-01-2007 to 31-03-2011. Parameters of the LEYP were estimated using

a quasi-Newton algorithm to maximise Equation 5.14, using the training data set. As for

predictions, they were built using Equation 5.17, where:

a is the age of pipe at 01-01-2001, or 0 if installed after 2001;

b is the age of pipe at 01-01-2007;

s is the age of pipe at 01-01-2007 (s = b);

t is the age of pipe at 31-03-2011;

j is the number of observed failures between 01-01-2001 and 01-01-2007.

Pipe material was used as grouping criteria and the logarithm of the length and the pipe

diameter enter the model as covariates. The age of pipes and the number of previous failures

are already taken into account during the model construction, so there is no need to use

them as model covariates. The estimated model coe�cients are presented in Tables 5.1 and

5.2.

In Table 5.1, parameters were estimated using the likelihood function restricted to positive

values of α and δ. Restrictions were included in the likelihood function using the variables

transformations: α = ela and δ = eld. The la and ld parameters are estimated with no
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restrictions using the maximum likelihood method, and then, α̂ and δ̂ are obtained applying

the exponential to l̂a and l̂d. Since Le Gat (2009) restricts δ > 1, the maximum likelihood

estimation using this restriction is presented in Table 5.2. In this table, the restriction in δ

was imposed, using the variable transformation δ = eld + 1.

Table 5.1: Maximum likelihood estimates of LEYP coe�cients by material category, restricted to

α > 0 and δ > 0.

HDPE

Parameters Estimate −2 ln (LR) p-value

α 6.122 103.54 <0.0001

δ 0.633 37.34 <0.0001

β0 -5.606 400.86 <0.0001

Diameter (βdiam) -0.003 4.31 0.0379

ln Length (βlnlength) 0.587 91.94 <0.0001

without covariates 92.44 <0.0001

PVC

Estimate −2 ln (LR) p-value

2.527 89.83 <0.0001

0.737 14.10 0.0002

-5.243 472.44 <0.0001

-0.001 0.14 0.7043

0.482 234.20 <0.0001

234.11 <0.0001

AC

Parameters Estimate −2 ln (LR) p-value

α 1.989 242.94 <0.0001

δ 0.668 13.23 0.0003

β0 -3.700 79.20 <0.0001

Diameter (βdiam) -0.003 45.40 <0.0001

ln Length (βlnlength) 0.304 313.77 <0.0001

without covariates 344.79 <0.0001

DCI

Estimate −2 ln (LR) p-value

12.371 7.16 0.0075

0.522 2.47 0.1159

-4.677 35.93 <0.0001

-0.001 0.02 0.9002

0.250 3.28 0.0702

3.70 0.0545

As presented in Table 5.1, the estimates associated with ln length are far from one, which

means that the intensity of the process will not be proportional to the length of pipes.

Nevertheless, this variable is still one of the most important variables of the model, as can

be seen by the p-value in all pipe material categories. On the contrary, pipe diameter seems

to be the less signi�cant variable.

Another interesting fact is that the estimate δ̂ is smaller than 1. This indicates that the

intensity process is decreasing with the elapsed time. However, using the log-likelihood

function of the NHPP, �xing α = 0 (Equation 5.21), the estimated δ̂ is greater than one in

all materials except HDPE. It seems, although the general network is ageing, the intensity of

the process is very high after the occurrence of a failure and tends to decrease until the next

failure occurs. This is explained by the fact that a pipe is very likely to fail soon after the

occurrence of a failure and this likelihood tends to decrease with time; the empirical hazard

function presented in Figure 1.1 translates this fact.

Table 5.2 presents the estimated parameters and their likelihood ratio test, restricting δ > 1,
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5.3. Fitting of the linear extended Yule process

Table 5.2: Maximum likelihood estimates of LEYP coe�cients by material category, restricted to

α > 0 and δ > 1.

HDPE

Parameters Estimate −2 ln (LR) p-value

α 3.635 74.79 <0.0001

δ 1.000 0.00 1.0000

β0 -6.478 767.50 <0.0001

Diameter (βdiam) -0.000 0.01 0.9372

ln Length (βlnlength) 0.568 89.15 <0.0001

without covariates 89.59 <0.0001

PVC

Estimate −2 ln (LR) p-value

1.904 76.05 <0.0001

1.000 0.02 0.8875

-6.191 795.80 <0.0001

-0.000 -0.08 1

0.513 234.63 <0.0001

234.58 <0.0001

AC

Parameters Estimate −2 ln (LR) p-value

α 1.789 265.91 <0.0001

δ 1.000 0.00 1.000

β0 -5.182 1433.74 <0.0001

Diameter (βdiam) -0.003 37.83 <0.0001

ln Length (βlnlength) 0.337 318.01 <0.0001

without covariates 341.74 <0.0001

DCI

Estimate −2 ln (LR) p-value

7.938 5.04 0.0248

1.000 0.00 1.000

-6.122 64.55 <0.0001

-0.001 0.19 0.6593

0.275 2.97 0.0849

3.88 0.0488

as imposed in Le Gat (2009). In this table, it can be seen that δ̂ is always one and that the

associated p-value is very high. This indicates that, for this failure data set, the δ of LEYP

is less than one, which is explained by the decreasing empirical hazard function presented in

Figure 1.1. Therefore, predictions of LEYP are conducted using the estimates in Table 5.1,

where δ is only restricted to being positive, since that δ > 1 is not a necessary condition to

derive the LEYP distribution.

Having the parameters estimated using the training set, the number of failures occurring

during the test window were predicted for each pipe. These predictions were compared with

the observed values of the test sample, as explained in Chapters 3 and 4. Figure 5.1 shows the

mean observed failures in each 0.1-quantile of predicted failures, for each pipe material. It

can be seen that there is a general overestimation of predicted failures of the last quantile in

each pipe material. Failures in DCI, once more, are poorly forecasted, reinforcing the point

that it is important to have an extended failure data to build accurate failure prediction

models.

Figure 5.2 groups the predictions in all pipes. In spite of the overestimation of the number

of failures in the last quantile, it seems that LEYP still detects e�ectively pipes that are

more prone of fail. The mean number of observed failures in the last quantile is as high as

in WALM, Figure 4.3, but it is higher than the one in the Poisson process, Figure 3.1.
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Figure 5.1: LEYP predictions in each material category.

A second test was carried out using the random division method to de�ne the training and

test samples. Parameters of LEYP are estimated using the maximum likelihood method

restricted to α > 0 and δ > 0, using a random sample of 50% of the water network pipes;

Figure 5.3 presents failure predictions in the other 50% sample of the water network, using

Equation 5.17, where:

a is 0;

b is 0;

j is 0;

s represents the age of pipe at 01-01-2001, or 0 if installed after 2001;

t represents the age of pipe at 31-03-2011.

As can be seen in Figure 5.3, predictions are much closer to the observed values than in

the previous prediction plots. The mean number of observed failures in the last prediction
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Figure 5.2: LEYP predictions in all pipes.
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Figure 5.3: LEYP predictions in random sample.

quantile stands out from the previous quantiles (twice as high), which translates a good

capacity of detecting the 10% pipes that are more prone to fail.
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Chapter 6

Comparison of model predictions

After analysing the failure data in Chapter 2 and applying the three models in Chapters

3, 4 and 5, the obtained results are compared in this chapter. Several prediction plots are

presented to better visualise the di�erences between the studied models. The comparisons

conducted and presented in this chapter are: number of failures that can be avoided using

the di�erent models; Receiver Operating Characteristic (ROC) curves comparison; the mean

of the predicted number of failures for each observed failures category; and the absolute error

of the predicted number of failures.

6.1 Prediction of failures based on a temporal divided

sample

In this section, the prediction results of the three models are compared when predicting

future failures of a water network, using the available pipe history. The training and test

sets are built according to the temporal division method. That is, the training set is the

failure data before 01-01-2007, whereas the test set is composed of all failures occurring after

01-01-2007 in those pipes.

First, the number of failures that can be avoided renewing a de�ned percentage of the water

supply system is compared. The aim of this comparison method is to evaluate the ability

the models have to prioritise pipes according to their likelihood of failing. If the failure

prediction model is good then a large percentage of failures occurring after 2006 can be

avoided rehabilitating a small percentage of the water network. Figure 6.1 illustrates this

term of comparison.

The pipes are sorted according to the predicted failure rates (for each model) and the cumu-
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Figure 6.1: Avoided failures per length of rehabilitated pipes.

lative observed failures are plotted against the cumulative pipe length. The model results

plotted in Figure 6.1 were obtained using the Poisson process (red line), the WALM using

the pipe age at last failure approach (blue line) and LEYP (green line). Individual failure

rates were also computed for each pipe, dividing the number of failures occurring before 2006

over its length, and used as a prioritisation criteria (orange line).

In Figure 6.1 it can be seen that LEYP and WALM results are very close to each other. The

Poisson process, in spite of having a general good prediction, lacks the capacity of detecting

the pipes at risk (more likely to fail). Clearly the priority pipes detected by the Poisson

process did not su�er as much failures as the ones detected by the two other models. This

fact can be explained due to the lack of ability of this model to di�erentiate pipes. Since it is

purely based on categories, every pipe in the same category has exactly the same predicted

failure rate.

On the other hand, the individual failure rate approach can e�ectively detect the pipes more

likely to fail until 15% of the water supply system is renewed; after this value it is a rather

poor method. The reason is that only 15% of pipes have recorded failures before 01-01-2007,

so all other pipes have an individual failure rate of zero.

WALM and LEYP both seemed to detect quite e�ciently pipes with higher probability of

failing. Nevertheless WALM curve appears to avoid more failures for most of values of the

renewal percentage, specially when renewing a large network percentage. To illustrate better

these conclusions, Table 6.1 shows the percentage of avoided failures when renewing a small

54



6.1. Prediction of failures based on a temporal divided sample

portion of the water supply system network.

Table 6.1: Percentage of avoided failures by prediction models.

Models
Rehabilitated length

0.5% 1% 5%

Poisson process 1.7% 3.0% 13.2%

WALM 4.1% 6.0% 22.3%

LEYP 5.3% 6.7% 22.2%

Single failure rate 4.1% 7.0% 21.3%

From Table 6.1 it can be seen that failures avoided using LEYP were very close to those using

WALM. It is important to note that the simple method of prioritising pipes according to

their past individual failure rates allowed avoiding a considerable amount of future failures,

rehabilitating a small percentage of the water supply network. This shows that pipes more

likely to fail are those with higher past failure rates. Therefore, even with few available at-

tributes, water utilities can prioritise e�ectively rehabilitation actions using a well organised

failure data.

A receiver operating characteristic (ROC) graph was built for the three model results. ROC

graphs are visualisation techniques that allow to compare di�erent classi�cation models per-

formance. ROC curves are based on confusion matrices, using the sensitivity and speci�city

of a classi�er. Although ROC curves were used mostly in medicine and psychology, it has

been now introduced in many other �elds and it has been found useful in decision problems.

Débon et al. (2010) apply these performance assessment method to a water supply network

in order to compare several prediction models. Problems that can be assessed with ROC

graphs have a decision binary variable (in this case if pipe will fail or not) and a classi�cation

model that produces a continuous response (in this case the probability of failing) that will

classify objects in both prediction classes, according to di�erent discrimination thresholds.

For each threshold the classi�er presents a true positive rate and a false positive rate. Ta-

ble 6.2 shows a confusion matrix in order to explain what are true and false, positive and

negative observations.

The true positive rate, TPR, of a classi�er is the proportion of the actual positive cases that

were correctly identi�ed, and is calculated using Equation 6.1.

TPR =
True positives

True positives + False negatives
. (6.1)

The false positive rate, FPR, is the proportion of the actual negative cases that were incor-
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Chapter 6: Comparison of model predictions

Table 6.2: Confusion matrix.

Actual class

P′ N′

Predicted class
P True positives False positives

N False negatives True negatives

rectly classi�ed as positive, and is calculated using Equation 6.2.

FPR =
False positives

False positives + True negatives
. (6.2)

A ROC graph consists simply in plotting these two rates for di�erent discrimination thresh-

olds. As the threshold decreases both rates will increase. Nevertheless, for a good prediction

model the true positive rate will increase much faster than the false positive rate, meaning

that the ROC curve will be way above the identity line f(x) = x.
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Figure 6.2: ROC curves failures after 2006.

Figure 6.2 presents the ROC curve of each model, using the probability of failing for each

pipe as the continuous response variable.

In this comparison LEYP and WALM results were also very alike, standing out from the
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6.1. Prediction of failures based on a temporal divided sample

Poisson process results, which presented a ROC curve slightly under LEYP's and WALM's

curves for most of the considered thresholds.

Another comparison was conducted, dividing the test sample in �ve classes according to the

number of observed failures in each pipe. The mean of the predicted number of failures for

each observed class is plotted in Figure 6.3.
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Figure 6.3: Mean predicted failures per observed failures categories.

LEYP appeared to be the most accurate model, because the obtained predictions, in pipes

that failed more, were higher than predictions obtained using other models. However, it

overestimates failures in pipes with no observed failures. Although it appears that this

overestimation is very insigni�cant, the �rst category of pipes with 0 failures is 297km long,

while the total length of all other categories is only 39km; therefore this overestimation is

not negligible.

The Poisson process showed the same overestimation in pipes with no observed failures and

a signi�cant underestimation in pipes with more observed failures, which indicated that this

model was less accurate than the other models.

The absolute error of the predicted number of failures can be calculated, using Equation 6.3.

Abs. Error =
n∑

i=1

|oi − êi|, (6.3)
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where n is the number of pipes; oi is the observed future failures in pipe i; and êi is the

predicted number of future failures in pipe i.

Table 6.3 presents the absolute error calculated using the model results in each pipe material

category.

Table 6.3: Absolute error of the predicted number of failure per pipe material.

Models HDPE PVC AC DCI All pipes

Poisson process 204.6 326.8 785.5 10.6 1327.4

WALM 120.9 259.6 687.6 7.1 1075.3

LEYP 169.8 330.0 782.6 10.1 1292.6

In this table, the LEYP and the Poisson process errors are very similar. WALM is clearly

the more accurate model of the three, as the absolute error is smaller in each pipe material

category.

In most of comparisons LEYP and WALM seemed to present similar results, leaving the

Poisson process slightly behind. However, LEYP had the tendency to overestimate failures,

while WALM seemed to produce more accurate predictions. In fact, there are 703 observed

failures after 01-01-2007. Failures predicted by the Poisson process, WALM and LEYP were

899, 642 and 938, respectively.

Based on these comparisons, WALM showed to produce more realistic results, but LEYP

seemed also to determine very e�ciently pipes with higher likelihood of failing. The Poisson

process is limited in prioritising pipes, but general predictions were not very biased. Thus

it can be used as a very simple model to predict the overall failures, but it would be a

poor method to prioritise rehabilitation actions. If a water supply system network has

a complete (and long) failure history of pipes, then the past failure rate seems to be an

e�cient prioritising criteria.

6.2 Predictions of failures based on a random sample

Good failure data history may not be available, due to recent collection and organisation

of the failure data, or due to data inconsistencies; therefore the data set is not trustworthy.

In that case, failure predictions should be based on failure data provided by similar water

supply systems. So, it is important that the failure prediction models present good results,

not only predicting failures in pipes with failure history, but also predicting failures in other
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6.2. Predictions of failures based on a random sample

sets of pipes with no recorded failure history.

In this section the training and test samples were built using the random division method.

The training sample is composed by a random 50% sample of all pipes and all associated

failures, whereas the test sample is composed by the other pipes and their associated failures.

Therefore the training and test windows go now from 01-01-2001 to 31-03-2011.

The �rst comparison consisted in estimating the number of failures that could be avoided by

renewing some portion of the water supply network. Figure 6.4 shows the results visually,

Table 6.4 shows the resulting number of avoided failures when a small percentage of the

water supply network is renewed.
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Figure 6.4: Avoided failures in random sample of pipes.

Table 6.4: Avoided failures in random sample of pipes.

Models
Rehabilitated length

0.5% 1% 5%

Poisson process 0.9% 3.0% 13.9%

WALM 1.0% 2.3% 16.4%

LEYP 0.5% 2.7% 17.0%

All three models seemed to present similar results. Although in Figure 6.4 WALM and LEYP

results appeared slightly better, when a small portion of the water supply system network
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is rehabilitated the three models are very similar (Table 6.4). In fact, this is not due to an

improvement of the predictions obtained using the Poisson process, it is rather caused by a

decrease of the percentage of avoided failures using LEYP and WALM, as can be seen by

comparing Tables 6.1 and 6.4.

To study these models as classi�ers, a new ROC curve was built for each model; the plot is

presented in Figure 6.5.
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Figure 6.5: ROC curves in random sample.

In Figure 6.5 all three models presented very similar results, being di�cult to select the best

model to use as a classi�er. Comparing Figures 6.5 and 6.2, it can be seen that the WALM

and the LEYP results became much closer to the Poisson process results.

Another comparison performed was plotting the mean of the predicted number of failures

for each category of observed failures.

In Figure 6.6, LEYP stands out from the other two models in the pipe categories with more

observed failures. Nevertheless, in the categories with few observed failures (0, 1 and 2), the

predictions obtained using the three models were very similar. The Poisson process seemed

to be the model with the worst results, since it is the one that showed higher overestimation

in the non-failing pipes category, while being the one that underestimated more in the last

pipe categories.

The absolute error of the predictions of each model, in each pipe material category, is pre-

sented in Table 6.5.
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Figure 6.6: Mean predicted failures per observed failures categories in random sample.

Table 6.5: Absolute error of the predicted number of failure per pipe material

Models HDPE PVC AC DCI All pipes

Poisson process 242.2 362.7 756.7 17.3 1378.8

WALM 198.9 359.1 753.4 13.2 1324.7

LEYP 205.9 358.7 754.9 13.9 1333.4

In this table it can be seen that the absolute error values were very close for all prediction

models. WALM is the one that appeared to present more accurate predictions. Comparing

both Tables 6.3 and 6.5, the absolute error of predictions in pipes with no failure history seems

higher. However, despite the test sample is smaller using the random division method, the

time period of the test sample is about twice as long. In fact, 958 observed failures occurred

in the test sample when using the random division method, whereas only 703 observed

failures occurred in the test sample of the temporal division method.

The model results, detecting pipes with higher likelihood of failing, when using a random

sample of pipes seemed to be worse than using the temporal divided sample (see Tables

6.1 and 6.4). However, while the Poisson process results maintain almost the same in both

tables, there is a signi�cant downgrade in LEYP and WALM results. The study of the

signi�cance of each covariate in the WALM (Chapter 4) and the analysis of the variables
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e�ect in the failure rate (Chapter 2) show that one of the most important pipe variables

is the previous failures variable. The application of the single-variate Poisson process did

not take into account this variable. Therefore, when the pipes failure history is unknown,

performances of LEYP and WALM get more similar to that of the Poisson process.

Despite the importance of the previous failures variable in determining the future failures,

as discussed earlier, the general predicted number of failures when no pipe failure history

is available was very accurate. In fact, the total number of predicted failures in all models

were close to the observed failures: there were 958 observed failures; the Poisson process,

the WALM and the LEYP predicted 960, 912 and 946 failures, respectively.

The overestimation in LEYP results, when using the temporal divided sample, is no longer

noticeable when predicting pipes with no failure history (i.e. using the random sample). The

linear increment of the LEYP intensity (and expected number of failures) with the number

of past failures may not be realistic and may explain the mentioned issue.
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Conclusions

This chapter summarises the main �ndings of this study, describing the advantages and

disadvantages of each model and pointing out the importance of having a complete and

reliable failure data.

The three models considered in this study presented good prediction results. WALM ap-

peared to be the best of the three models, because it combined accurate predictions with a

good ability of detecting pipes more prone to fail. On the other hand, the Poisson process

was the one that presented the worst general performance.

The Poisson process was implemented to study the behaviour of a simple and intuitive

prediction model. This model is easy to understand and easy to implement. The only

parameters to be estimated, in the case of the Poisson process, are the failure rates for each

de�ned category, presenting an analytical and intuitive expression (Equation 3.2). So, it

does not require numerical algorithms to estimate the failure distribution. Finally it allows

the user to easily de�ne the categories to build the model. However, its results are slightly

worse than the results obtained by the other two models.

The fact that the Poisson process is de�ned by categories rather than covariates, implies that

every pipe in the same category have the same failure rate. This fact leads to a di�culty

in di�erentiating pipes and selecting the pipes that are more likely to fail. That is why

the number of avoided failures obtained using this model, is not as high as when using

other models (Figure 6.1). In order to better di�erentiate pipes, there should be de�ned

an increased number of categories. However, a high number of categories would cause an

over splitting of the failure data leading to non-signi�cant failure rates, which could lead to

completely biased predictions. The individual past failure rate could be used to prioritise

pipes within the same pipe category.

When studying pipes with no failure history, the di�erence between the Poisson process
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and the two other methods decreases. This supports that the previous failures variable is

of utmost importance when predicting future failures. The previous failures variable could

enter the Poisson process as grouping criteria. However, failure data would have to su�er an

additional time division: one to build the pipe categories associated with the number of past

recorded failures and another to calculate the observed failure rate in each category. This is

a complex method and requires an extensive failure data set.

Accelerated lifetime models are signi�cantly di�erent from the other studied models. These

models �t the time between failures, rather than the number of failures. In this study, the

distribution of the time between failures was chosen to be a Weibull distribution, because it

combines several features:

(i) Weibull presents an intuitive hazard function, which can be important to understand

the di�erent covariates e�ect in the lifetime distribution;

(ii) the Weibull hazard function is not constant over time, allowing to better �t the failure

data;

(iii) it also presents a simple survival function, which is important to obtain the likeli-

hood function (Equation 4.7) and to generate random times during the Monte Carlo

simulations (Equation 4.10).

The fact that WALM �ts the time between failures rather than being a counting process, can

produce a di�erent knowledge about pipes and their failures. Di�erent estimated quantiles

of this distribution could give useful information about pipes, such as the service life of pipe

materials. However, quantiles of the estimated distribution are far from realistic. The 50%

quantile of an average pipe of Asbestos Cement is about 100 years and in other pipes can

go over 500 years. This is probably due to the short time records of the failure data used

in this study. The short period of observations does not allow e�ciently understanding the

deterioration process of pipes. With a more extended failure data it would be expected to

obtain more realistic results.

Weibull distributions present the disadvantage of not being analytically convoluted. So, it is

not possible to �nd the general number of failures distribution. Thereby, the expected num-

ber of failures needs a Monte Carlo simulation process. Nevertheless, this simulation process

can give very good predictions with a high number of experiments. During the WALM

analysis the number of failures prediction process was carried out using 1,000 experiments,

for each pipe. This number of experiments seemed to be adequate, since more tests were

conducted using more experiments, but predictions were very similar.

Despite the fact that the predicted number of failures are not directly given by a random

variable distribution, these predictions were very accurate. Actually, this was the model that
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presented the best results in all comparisons, among the results of the three models. The

WALM combines a great capacity of detecting pipes with higher likelihood of failing, which

can be translated by the percentage of avoided failures using this model (Table 6.1) and

accurate predictions (Figure 4.3 and Table 6.3).

Prioritising the pipes more likely to fail among those with no failure history is clearly a

more di�cult task, specially since the previous failures variable is one of the most signi�cant

covariates in the WALM regression (Table 4.1). However, WALM results obtained using a

random sample of pipes were still very accurate (Figure 4.5 and Table 6.5) and the number

of avoided failures was similar to the number of avoided failures using other models (Table

6.4).

The linear extended Yule process was �rst applied to water supply network failure data by

Le Gat (2009). This model is born from a pure birth process (also called Yule process), where

the rate of the process increases linearly with the number of events. A linear extension of

this model, maintains this proportion between the process rate and the number of previous

events. Le Gat (2009) supports the use of this model based on the fact that an increasing

number of previous failures leads to a higher future failure rate. Nevertheless it is not clear

that the relation between past number of failures and future failure rate is linear. Therefore

a non-homogeneous birth process using other functions of the number of previous failures,

αn, (see Equation 5.5) to describe the intensity of the process could be studied. For instance,

a limited function (continuous convergent function or a �nite valued function) could be a

good solution. However, considering other αn functions can increase the complexity of the

prediction model.

The nature of LEYP is probably the reason why this model presents a clear tendency to

overestimate the number of future failures (Figure 5.2). Nevertheless, LEYP presented a

really good performance when detecting pipes more prone to fail (Figures 6.1 and 6.3).

When applied to pipes with no recorded failure history, LEYP does not make the same

overestimation; predictions are signi�cantly more accurate, as can be seen in Figure 5.3.

The predictions obtained using the three models can be considered accurate. WALM and

LEYP present important advantages over the Poisson process. The use of covariates allows

a better understanding of the di�erent e�ect of the pipe variables and does not require the

division of the failure data, which could be a problem when dealing with small failure data.

The Poisson process has the advantage of being a simple method, which makes it easy to

understand and to apply.

As might be expected, it was con�rmed that the past failures variable was extremely impor-

tant when predicting future failures. Pipes that have failed before, present a much higher

probability of failing in the future. This may be explained by the fact that a pipe repair is
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not the same as a pipe replacement; in general, a pipe becomes more fragile after a repair

than before the failure happens. Another possible reason is that there are other unknown

attributes that in�uence the failure rate, such as environmental, tra�c or operating pressure

conditions. And so, the higher failure values could be explained by other characteristics

associated to the installation site rather than the fragility of those pipes. This is what makes

predictions in pipes with no recorded history more di�cult. This is the reason why it is so

important to build a complete and trustworthy failure database.

All models require an organised information system with a complete inventory with all pipes

well characterised. Even if there is not an extensive pipe database with a lot of variables,

good predictions can be done, as proved by the application of the Poisson process, using only

three variables. It is not necessary long maintenance records, LEYP and specially WALM

o�er very good predictions, only using six years of rehabilitation records. What is strictly

necessary is to have a complete and up-to-date pipe inventory of all pipes and a reliable

rehabilitation database properly linked to the pipe inventory. The information system should

be periodically reviewed in order to detect and correct possible inconsistencies.
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